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The calculation of the magnitudes and phase angles of the bus voltage is a challenging task in real-time applications for power
systems. Voltage profile, which denotes the present conditions of a power system, is determined by executing the traditional
AC power flow program or by searching the supervisory control and data acquisition system. The AC power flow program
is not suitable for several real-time applications, such as contingency analysis and security control calculations, because of its
complexity and convergence problems. Fast computation is the major concern in such applications. In this paper, a new method
based on sensitivity factors, referred to as Jacobian-based distribution factors (JBDFs), is proposed for calculating the magnitudes
and phase angles of bus voltages. This method requires setting up JBDFs and deriving optimal solution paths of bus voltage for
non-swing buses through dynamic programming under base-case loading conditions. Under real-time conditions, the proposed
method initially calculates real and reactive power line flows via JBDFs, and then computes the voltage magnitudes and phase
angles of non-swing buses through the derived optimal solution paths. The excellence of the proposed hybrid calculation method
is verified by IEEE test systems. Simulation results demonstrate that the proposed method exhibits fast computation and high
accuracy. Thus, the method is suitable for real-time applications. © 2015 Institute of Electrical Engineers of Japan. Published
by John Wiley & Sons, Inc.
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1. Introduction

The power flow program in an AC power system can be mod-
eled by a set of nonlinear equations and solved by numerical
iterative methods. The well-known solution approaches are the
Gauss–Seidel [1], Newton–Raphson [1,2], fast decoupled meth-
ods [3], and new, efficient iterative techniques [4–7]. However,
in practical large-scale power systems consisting of thousands of
buses, the standard Newton–Raphson method has a slow execu-
tion time, because of the need for recalculation of a large Jacobian
matrix in each iteration. Therefore, the fast decoupled power flow
approaches were presented to overcome this disadvantage, and it
is very useful in practical power system analyses, such as con-
tingency analysis, online power flow control, etc. Nevertheless,
the aforementioned methods still require numerous iterations for
convergence. Approaches based on network sensitivity, such as
generation shift distribution factor (GSDF) [8], generalized gen-
eration distribution factor (GGDF) [9], Z-bus distribution factor
(ZBD) [10], and power transfer distribution factor [11,12], have
been proposed for improving the weakness of conventional meth-
ods. Although the aforementioned sensitivity factors still have
disadvantages, their calculation time is small and they do not need
any iteration after the load demand is changed. Therefore, these
factors are adopted in economic dispatching [13], optimal power
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flow, security control [14], and line flow computation after a fault
occurs.

In [15], a Jacobian-based distribution factor (JBDF) is proposed
for overcoming the shortcomings of GSDF, GGDF, and ZBD.
The correlative partial differential terms of JBDF are derived
according to base-case power flow solutions and the inverse
Jacobian matrix. Then, the active and reactive power JBDF terms
are established [15]. This approach reflects changes in the complex
injection power. Changes in load conditions from base-case loads,
with either conforming or nonconforming changes in complex
power in each bus, can be used to compute active and reactive
power flows without iterations, rapidly. The use of JBDF for
solving line flow after a change in load demand is fine except
for solving the magnitude and phase angle of bus voltage. In
this paper, both line flow and the bus voltage can be solved
by the proposed hybrid approach based on sensitivity factors.
Consequently, the Newton–Raphson method is employed as the
base-case solution framework. The essential difference is that
the proposed approach computes solutions of the bus voltage
equations via JBDF bus voltage formulas instead of iterative
nonlinear equations. Figure 1 shows the schematic diagram of
the proposed approach and its real-time applications for modern
power systems. This approach can simplify the solution procedure.
With this simplification, a reduction in the overall execution time
is expected. Thus, the proposed approach, which combines the
Newton–Raphson method and dynamic programming, is a fast
and effective soft calculation method for real-time applications
of power systems. The rest of the paper is organized as follows.
Section 2 presents the derivation of the JBDF bus voltage formulas.
Section 3 describes the solution procedure. Section 4 discusses the
numerical results. Section 5 concludes the paper.

© 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.



REAL-TIME CALCULATION OF POWER SYSTEM BUS VOLTAGE

Newton-raphson method for

solving power flow

Derived

bus voltage & line flow

Load demand changes

JBDF bus voltage&

line flowformulas

(without iteration)

Real-time

applications

Traditional AC power

flow method

(with iteration)

Fig. 1. Schematic diagram of the proposed approach

2. Derivation of the JBDF Bus Voltage Formulas

The proposed hybrid approach initially computes the real-time
line flow solution using the JBDF method based on the base-case
power flow solution of the Newton–Raphson method after load
demand changes across all buses. Then, the voltage magnitudes
and phase angles of the non-swing buses are calculated using
the JBDF bus voltage formulas derived from the optimal paths
obtained via dynamic programming. Consequently, the voltage
magnitudes and phase angles of the system buses can be solved
rapidly and correctly without any iteration. An object function,
which is composed of line voltage drop, must be established and
then solved by dynamic programming to address possible multiple
solution paths from the swing bus to the other buses, including PV
and PQ [16–18]. The optimal paths from the swing bus to the other
buses in this section are obtained in advance according to the base-
case power flow solution. These paths can also be used for solving
real-time voltage magnitudes and phase angles of non-swing buses.

2.1. Formula derivation Following [15], the active and
reactive power flows of line m can be modeled as base-case
active and reactive power flows (P0

m , Q0
m) plus the summation

of the production of JBDF as well as incremental active and
reactive power injections. The derivation of (1)–(6) are shown
in the Appendix.

Pm
∼= P0

m +
NB∑
i=1

Fp(m , i )�Pi +
NB∑
i=1

Kp(m , i )�Qi (1)

Qm
∼= Q0

m +
NB∑
i=1

Fq (m , i )�Pi +
NB∑
i=1

Kq (m , i )�Qi (2)

where Fp(m , i ), Kp(m , i ), Fq (m , i ), and Kq (m , i ) represent the
active and reactive power JBDFs; besides, NB denotes the bus
number of the system; �Pi and �Qi represent the increments of
active and reactive power in bus i . These factors can be derived
as follows:

Fp(m , i ) =
(

∂|Vp |
∂Pi
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p qSm = Pm + jQm (Ipq = Im)

Zpq = Zm = Rm = jXm

Vp Vq

Transmission line m

Fig. 2. Equivalent circuit model of a transmission line

Kp(m , i ) =
(
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The active and reactive power line flows of each line section
can be obtained with a high degree of accuracy without risking
divergence by using the previously described JBDF method.

In Fig. 2, Sm , Pm , and Qm represent the complex, active, and
reactive power line flows of line m , respectively. The current of
line m can be represented as

Im = Pm − jQm

V ∗
p

(7)

where V ∗
p denotes the conjugate of voltage at bus p. In practical

power systems, any changes in bus power injection cause varia-
tions in all bus voltage magnitudes and phase angles. Therefore,
substituting (1) and (2) for Pm and Qm in (7) will yield

Im =
P0

m +
NB∑
i=1

Fp(m , i )�Pi +
NB∑
i=1

Kp(m , i )�Qi

V ∗
p

−j

Q0
m +

NB∑
i=1

Fq (m , i )�Pi +
NB∑
i=1

Kq (m , i )�Qi

V ∗
p

(8)

Following Ohm’s law, the voltage drop of line m from bus p to
bus q can be expressed as

Vpq = Im · Zm (9)

where Zm denotes the primitive line impedance of line m , and
Vpq denotes the voltage drop of line m . The voltage magnitudes
and phase angles of non-swing buses can be derived from the
calculations of the voltage drop of all line sections.

2.2. Illustration of the proposed algorithm A five-
bus sample system is shown in Fig. 3. This system is used to
illustrate the solution procedure of the proposed approach. Bus 1
is set as the swing bus, and the bus voltage is V1. According to
the JBDF and base-case power flow solution, the currents in each
line section can be derived and expressed as follows:

I1 = 1

V ∗
1

·

⎧⎪⎪⎨
⎪⎪⎩

P0
1 +

5∑
i=1

[Fp(1, i )�Pi + Kp(1, i )�Qi ]

−j

[
Q0

1 +
5∑

i=1
[Fq (1, i )�Pi + Kq (1, i )�Qi ]

]
⎫⎪⎪⎬
⎪⎪⎭ (10)
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Fig. 3. Five-bus sample system
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In addition, the voltage drop in each line section can be expressed
as follows:

V1 − V2 = V12 = I1Z12 (17)

V1 − V3 = V13 = I2Z13 (18)

V1 − V4 = V14 = I3Z14 (19)

V2 − V4 = V24 = I4Z24 (20)

V2 − V5 = V25 = I5Z25 (21)

V3 − V4 = V34 = I6Z34 (22)

V4 − V5 = V45 = I7Z45 (23)

The non-swing bus voltage can be derived from (17)–(23) and
the known bus voltage V1 = 1.0∠0̊ pu, as follows:

V2 = V1 − V12 = V1 − I1Z12 (24)

V3 = V1 − V13 = V1 − I2Z13 (25)

V4 = V1 − V14 = V1 − I3Z14 (26)

where,V4 can also be derived by the other circuit path, that is

V4 − V5 = V45 = I7Z45 (27)

V12

V13

V12 V25 V54

V24

V34

V1

V1

V1

V2

V3

V2

V4

V4

V4V5

Fig. 4. Bus voltage solution path between bus 1 and bus 4 of the
five-bus sample system

Furthermore, the voltage at bus 4 can be rewritten as

V4 = V2 − V24 = V2 − I4Z24 = V1 − V12 − V24 (28)

or

V4 = V3 − V34 = V3 − I6Z34 = V3 − V13 − V34 (29)

or

V4 = V1 − V12 − V25 − V54 (30)

Additionally, V5 can be derived from bus 1 to bus 5 through
bus 2. Therefore

V5 = V1 − V12 − V25 (31)

V5 can also be derived through the other circuit path as follows:

V5 = V1 − V12 − V24 − V45 (32)

or

V5 = V1 − V13 − V34 − V45 (33)

The derivation results show that numerous solution paths exist
between the swing and non-swing buses. For example, Fig. 4
shows three solution paths that can be used to find the voltage
at bus 4: bus 1–bus 2–bus 4, bus 1–bus 3–bus 4, and bus1–bus
2–bus 5–bus 4. Therefore, there are two approaches, which are
the brute force and dynamic programming methods, to calculate
the voltage at bus 4. However, the error of the bus voltage solu-
tion by the computing approach mentioned above resulted from
the current Ipq (as shown in Fig. 2) in Ipq Zpq according to the error
propagation principle. Thus, the optimal solution path is chosen
by minimizing the summation of Ipq Zpq . Consequently, this prob-
lem is similar to the minimum cost problem unit comment by
the dynamic programming method. In this paper, the dynamic
programming algorithm is used to find the optimal path for cal-
culating the bus voltage. Because the system topology is formed
by the elements and their connections, each power system has
its unique circuit topology. Therefore, there are different paths
from the swing bus to each end buses, and each path is composed
of the interconnected branches (transmission lines) and buses, in
which the feasible bus represents the bus in the path, which is
from the swing bus to end bus; otherwise, the bus that is not in
the path means infeasible bus, as shown in Fig.5. Consequently,
in the dynamic-programming-based bus voltage calculation algo-
rithm, for each circuit path, different combinations of buses and
branches, which render feasible solutions to the minimum volt-
age drop path problem, are considered. At each line section, the
derived JBDF bus voltage formulas are applied on every feasible
connection to calculate the voltage drops. At each bus, a pointer
is assigned to every feasible connection that uniquely identifies its
predecessor, yielding the least cumulative voltage drop. The opti-
mal solution path is obtained by tracing the circuit path linking the
successive decisions that rendered the least total cumulative volt-
age drop. In this paper, the forward dynamic programming must
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be used. The recursion function required to solve this problem is
given by

CVDpq = min

[
Ipq Zpq +

n∑
b=1

VDp−1,q−1

]
(34)

where CVDpq =
n∑

b=1
VDp,q is the cumulative voltage drop associ-

ated with bus p to bus q , for all buses from bus p − 1 to bus
q − 1.

To sum up, the optimal solution paths between swing and non-
swing buses can be found and established in base-case or off-line
stages. Then, the voltage magnitudes and phase angles of non-
swing buses can be solved using the paths established after system
load demand changes for real-time applications.

3. Solution Procedure

The proposed hybrid approach involves the Newton–Raphson
method, JBDF sensitivity factors, and dynamic programming.
Except for the base-case power flow solution by the New-
ton–Raphson method, line flow and bus voltage will be solved
by JBDF sensitivity factors and dynamic programming after sys-
tem load demand changes for real-time applications. The solu-
tion flowchart for real-time applications is shown in Fig. 6. This
flowchart can also be organized by the following steps.

Step 1: The base-case power flow is calculated using the
Newton–Raphson method. The active and reactive power line
flows, as well as the bus voltages, are obtained.

Step 2: Dynamic programming is used to build optimal solution
paths from the swing bus to the end bus.

Step 3: Line flow JBDF formulas for calculating active and
reactive power line flows after load demand changes are used.

Step 4: Bus voltage JBDF formulas as well as the established
optimal solution paths for computing bus voltage magnitudes and
phase angles after load demand changes are used.

Finally, the proposed approach is tested using the IEEE 14-bus,
25-bus, and 30-bus test systems to verify its accuracy compared
with the exact solution provided by the traditional AC power flow
method (Newton–Raphson method).

4. Discussion and Analysis of the Numerical Results

The mathematical models and solution procedure of the pro-
posed approach for calculating line flow and bus voltage were
derived in Sections 2 and 3. The proposed approach was coded
using MATLAB and executed on a Windows XP-based Intel
Pentium-M 2.0 GHz CPU personal computer based on the afore-
mentioned formulations. The performance of the approach was
assessed according to standard IEEE test systems [19].

Start

Input data:

system topology, bus

data, and line data

• Solving base case power flow

by Newton-Raphson method

• Establish the optimal solution

paths by dynamic programming

Read new load demand

from SCADA system

Using the line flow JBDF to calculate

active and reactive power line flows by

(1) and (2)

Using the bus voltage JBDF and the

established optimal solution paths to

compute bus voltage magnitudes and

phase angles by (8) and (9)

Exit the computing loop?

End

No

Yes

Fig. 6. Flowchart of the proposed hybrid method

4.1. Test systems The single-line diagram, line data, and
bus data of the IEEE test systems for steady-state modeling
and simulation are listed in [19]. In the present study, only the
numerical results of the IEEE 30-bus test system are analyzed and
discussed in detail to verify the accuracy of the proposed approach.
The results of the other test systems, namely IEEE 14-bus and 25-
bus, are used to discuss and compare the maximum errors and
execution time.

4.2. Optimal solution paths The IEEE 30-bus test
system with medium-scale power has 30 buses and 60 transmission
lines. The optimal solution paths are shown in Fig. 7, which means
the minimum voltage drop circuit paths between swing and non-
swing buses are obtained by dynamic programming. For example,
numerous paths can be taken from bus 1 to bus 30; however, only
one minimum line voltage drop path exists (Fig. 7). This path
is optimal because it contains the least errors among all paths.
Consequently, the voltage magnitude and phase angle at bus 30
can be solved by the path bus 1–bus 2–bus 6-bus 28–bus 27–bus
30. Therefore, V30 can be calculated through V1-V12-V26-V2,28-
V28,27-V27,30 using (1)–(9).

4.3. Numerical results The developed sensitivity-based
approaches, such as GSDF and GGDF [8,9] cannot deal with
the conforming load demand change; however, the ZBD [10]
and JBDF [15] are able to cope with both the conforming
and nonconforming load demand changes. Consequently, three
scenarios are assumed in this paper: two conforming and one
nonconforming load changes in system demand from the base
load. The conforming load change means that the system load
increase or decrease is the same in all buses; however, the
nonconforming load change means that the system load increase
or decrease is randomly in all buses; this scenario is close to
reflecting the characteristics of changes in system demand for
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practical systems. The numerical results of the voltage magnitudes
and phase angles as the conforming load demand increased by
10% are shown in Figs 8 and 9, respectively. Figure 8 shows
that the maximum voltage magnitude mismatch of the proposed
approach is 0.0003 pu at bus 3 and that the maximum percentage
error is 0.0292%. Figure 9 shows that the maximum phase angle
mismatch of the proposed approach is 0.0091◦ at bus 29 and
that the maximum percentage error is 0.1249%. Similarly, the
numerical results of the voltage magnitudes and phase angles as the
conforming load demand increased by 20% are shown in Figs 10
and 11, respectively. Figure 10 shows that the maximum voltage
magnitude mismatch of the proposed approach is 0.0011 pu at bus
30 and that the maximum percentage error is 0.1222%. Figure 11
shows that the maximum phase angle mismatch of the proposed
approach is 0.0390◦ at bus 30 and that the maximum percentage
error is 0.3234%. For the nonconforming load demand change, the
assumption of the percentage changes in the nonconforming load
demand is listed in Table I. The simulation results in Fig. 12 show
that the maximum voltage magnitude mismatch of the proposed
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Fig. 11. Numerical results of the phase angle of the conforming
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approach is 0.0003 pu at bus 19 and that the maximum percentage
error is 0.0353%. Besides, Fig. 13 shows that the maximum phase
angle mismatch of the proposed approach is 0.0075◦ at bus 18 and
that the maximum percentage error is 0.1271%. According to the
simulation results, although the acceptable errors of bus voltage
are obtained by the proposed approach without any iteration, it is
certain that the efficiency is absolutely better than the traditional
AC power flow method with iteration. Consequently, our method
can be applied for real-time applications.

4.4. Discussion The numerical results indicate minimal
errors in the voltage magnitude and phase angle of the IEEE
30-bus test system. Moreover, three IEEE test systems were
used to examine the maximum errors in the bus voltage of the
proposed approach. The results indicate that the maximum errors
are small, as shown in Table II. Furthermore, Table III shows that
the execution time of the proposed approach is superior to that
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Table I. Percentage of nonconforming system demands

% \ Bus number 1 2 3 4 5 6 7 8 9 10

�Pi 0 0 15 25 0 18 6 0 5 24
�Qi 0 0 10 30 0 8 25 0 20 14
% \ Bus number 11 12 13 14 15 16 17 18 19 20
�Pi 0 28 0 0 5 30 15 6 30 11
�Qi 0 18 0 6 27 30 12 5 7 6
% \ Bus number 21 22 23 24 25 26 27 28 29 30
�Pi 7 15 12 0 16 11 30 14 25 0
�Qi 23 6 25 16 6 22 28 24 5 10

Traditional AC power flow method (A)

Proposed approach (B)

Error (|A–B|)
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Fig. 12. Numerical results of the voltage magnitude of the non-
conforming load demand change
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Fig. 13. Numerical results of the phase angle of the nonconform-
ing load demand change

of the traditional AC power flow method; the average execution
time is just about 0.147 times the traditional AC power flow
method. The larger the system, the shorter will be the execution
time. Consequently, we conclude that the overall performance
of the proposed approach is sufficient for real-time applications
for managing power systems online. In real-time applications, if
loading of the transmission line is larger than SIL (surge impedance
loading), it will affect the accuracy of the proposed approach;
besides, it is worth noting that greater error in bus voltage
calculation occurs for large changes in system load demand. If the
error is unacceptable, the base case power flow must be executed
again to ensure an acceptable solution. In this paper, the changes
of 20% in system demand from base case were simulated, and the
degree of error was acceptable.

5. Conclusion

In this paper, a hybrid approach composed of the New-
ton–Raphson method and dynamic programming was proposed for
calculating line flow and bus voltage in real time. The proposed

Table II. Maximum mismatch of the proposed approach
compared with the traditional AC power flow method

Bus voltage Voltage magnitude (pu) Phase angle (Degree)

test system
Bus

number
Max.
error

Bus
number

Max.
error

IEEE 14-bus 10 0.00253 14 0.0700
IEEE 25-bus 24 0.00690 14 0.1771
IEEE 30-bus 30 0.00179 30 0.0630

Table III. Execution time of the proposed approach compared
with the traditional AC power flow method

Traditional AC power
flow method (with

iteration)
Proposed approach
(without iteration)

Test
system

Execution
time

Normalized
time

Execution
time

Normalized
time

IEEE 14-Bus 109 ms 1.0 15 ms 0.138
IEEE 25-Bus 180 ms 1.0 32 ms 0.178
IEEE 30-Bus 172 ms 1.0 23 ms 0.134

method overcomes the convergence problem of the traditional
AC power flow method without any iteration after load demand
changes, thereby eliminating convergence problem in real-time
applications. The voltage magnitude and phase angle at each bus in
power systems can be calculated easily with the proposed method,
thus reflecting changes in line flows into bus voltages. Numerical
results show that the voltage magnitude and phase angle calculated
by the proposed approach are nearly the same as those calculated
by the AC power flow method. The proposed approach demon-
strates high accuracy and short execution time in calculating the
bus voltage. Thus, the proposed method is suitable for real-time
applications.

Appendix

Figure 2 shows a schematic diagram of the transmission line m
from bus p to bus q , in which the active and reactive power flow
can be expressed as

Pm = Gm |Vp |2 − Gm |Vp ||Vq | cos(δp − δq )

− Bm |Vp ||Vq | sin(δp − δq ) (A1)

Qm = −Bm |Vp |2 + Bm |Vp ||Vq | cos(δp − δq )

− Gm |Vp ||Vq | sin(δp − δq ) (A2)

where Pm and Qm denote the active and reactive power flow on
arbitrary line m; |Vp |, |Vq |, and δp , δq denote the voltage magnitude
and phase angles for bus p and q ; and Gm and Bm represent the
conductance and acceptance of line m .

The active power flow of line m can be modeled as the base-
case active power flow (P0

m) plus the incremental active power
flow (�Pm), i.e.

Pm
∼= P0

m + �Pm (A3)

Furthermore, the incremental active power flow of line m can
be modeled as

�Pm =
NB∑
i=1

∂Pm

∂Pi
�Pi +

NB∑
i=1

∂Pm

∂Qi
�Qi (A4)
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These terms can be replaced by Fp(m , i ), and Kp(m , i ), termed
the active power JBDF. Consequently, (A4) can be rewritten as:

�Pm =
NB∑
i=1

Fp(m , i )�Pi +
NB∑
i=1

Kp(m , i )�Qi (A5)

Substituting from (A4) for �Pm in (A3), we get

Pm
∼= P0

m +
NB∑
i=1

Fp(m , i )�Pi +
NB∑
i=1

Kp(m , i )�Qi (A6)

Additionally, the active power JBDF terms can be expressed as

Fp(m , i ) =
NB∑
j=1

∂|Vj |
∂Pi

· ∂Pm

∂|Vj | +
NB∑
j=1

∂δj

∂Pi
·∂Pm

∂δj
m = 1, 2, . . . , NL

(A7)

And

Kp(m , i ) =
NB∑
j=1

∂|Vj |
∂Qi

· ∂Pm

∂|Vj | +
NB∑
j=1

∂δj

∂Qi
·∂Pm

∂δj
m = 1, 2, . . . , NL

(A8)

where NL denotes the number of lines in the system. In (A7) and
(A8), the partial differential terms

∂|Vj |
∂Pi

,
∂δj
∂Pi

,
∂|Vj |
∂Qi

, and
∂δj
∂Qi

can
be calculated in the Jacobian matrix of the base-case power flow
solution. In the Newton–Raphson algorithm, the iterative power
flow equations can be expressed as[

�P
�Q

]
=

[
J1 J2

J3 J4

] [
�δ

�|V |
]

(A9)

Moreover, the inverse form of the above equations can be
written as [

�δ

�|V |
]

=
[

JB1 JB2

JB3 JB4

] [
�P
�Q

]
(A10)

in which JB1 is the term of ∂δ
∂P . JB2 is the term of ∂δ

∂Q , JB3

is the term of ∂|V |
∂P , and JB4 is the term of ∂|V |

∂Q . In the base-
case power flow solution, these terms can be calculated using
the Newton power flow program, which is kept constant during
real-time computation when load levels deviate from base case
loading conditions. Because line m is from bus p to bus q , active
power flow Pm is only related to |Vp |,|Vq |, δp , and δq . Therefore,
the summation of the differential terms in (A7) and (A8) can be
reduced to

Fp(m , i ) =
(

∂|Vp |
∂Pi

)
· ∂Pm

∂|Vp | +
(

∂|Vq |
∂Pi

)
· ∂Pm

∂|Vq |

+
(

∂δp

∂Pi

)
·∂Pm

∂δp
+

(
∂δq

∂Pi

)
·∂Pm

∂δq
(A11)

Kp(m , i ) =
(

∂|Vp |
∂Qi

)
∂Pm

∂|Vp | +
(

∂|Vq |
∂Qi

)
∂Pm

∂|Vq |

+
(

∂δp

∂Qi

)
∂Pm

∂δp
+

(
∂δq

∂Qi

)
∂Pm

∂δq
(A12)

The derivation of reactive power JBDF is similar to active power
JBDF; the reactive power flow of line m can be expressed as

Qm = Q0
m + �Qm (A13)

The incremental reactive power flow of line m can be
expressed as

�Qm =
NB∑
i=1

∂Qm

∂Pi
�Pi +

NB∑
i=1

∂Qm

∂Qi
�Qi (A14)

in which the partial differential terms ∂Qm
∂Pi

and ∂Qm
∂Qi

represent the

sensitivity of bus i to line m , from bus p to bus q . These terms can
be replaced by Fq (m , i ) and Kq (m , i ), termed the reactive power
JBDF. Accordingly, (A14) can be rewritten as

�Qm =
NB∑
i=1

Fq (m , i )�Pi +
NB∑
i=1

Kq (m , i )�Qi (A15)

Substituting (A15) for �Qm in (A13), we get

Qm
∼= Q0

m +
NB∑
i=1

Fq (m , i )�Pi +
NB∑
i=1

Kq (m , i )�Qi (A16)

Therefore, the reactive power JBDF terms can be derived as
follows:

Fq (m , i ) =
NB∑
j=1

∂|Vj |
∂Pi

· ∂Qm

∂|Vj | +
NB∑
j=1

∂δj

∂Pi
·∂Qm

∂δj
m = 1, 2, . . . , NL

(A17)

and

Kq (m , i ) =
NB∑
j=1

∂|Vj |
∂Qi

· ∂Qm

∂|Vj | +
NB∑
j=1

∂δj

∂Qi
·∂Qm

∂δj
m = 1, 2, . . . , NL

(A18)

In (A17) and (A18), the partial differential terms
∂|Vj |
∂Pi

,
∂δj
∂Pi

,
∂|Vj |
∂Qi

,

and
∂δj
∂Qi

can be calculated in the Jacobian matrix of the base-case
power flow solution. As mentioned above, the summation of the
differential terms in (A17) and (A18) can be curtailed to

Fq (m , i ) =
(

∂|Vp |
∂Pi

)
· ∂Qm

∂|Vp | +
(

∂|Vq |
∂Pi

)
· ∂Qm

∂|Vq |

+
(

∂δp

∂Pi

)
· ∂Qm

∂δp
+

(
∂δq

∂Pi

)
· ∂Qm

∂δq
(A19)

Kq (m , i ) =
(

∂|Vp |
∂Qi

)
∂Qm

∂|Vp | +
(

∂|Vq |
∂Qi

)
∂Qm

∂|Vq |

+
(

∂δp

∂Qi

)
∂Qm

∂δp
+

(
∂δq

∂Qi

)
∂Qm

∂δq
(A20)
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