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Abstract: The inclusion of microgrids (MGs) in power systems, especially distribution-substation-level
MGs, significantly affects power systems because of the large volumes of import and export power
flows. Consequently, power dispatch has become complicated, and finding an optimal solution
is difficult. In this study, a three-stage optimal power dispatch model is proposed to solve such
dispatch problems. In the proposed model, the entire power system is divided into two parts, namely,
the main power grid and MGs. The optimal power dispatch problem is resolved on the basis of
multi-area concepts. In stage I, the main power system economic dispatch (ED) problem is solved
by sensitive factors. In stage II, the optimal power dispatches of the local MGs are addressed via
an improved direct search method. In stage III, the incremental linear models for the entire power
system can be established on the basis of the solutions of the previous two stages and can be subjected
to linear programming to determine the optimal reschedules from the original dispatch solutions.
The proposed method is coded using Matlab and tested by utilizing an IEEE 14-bus test system to
verify its feasibility and accuracy. Results demonstrated that the proposed approach can be used for
the ED of power systems with MGs as virtual power plants.

Keywords: distributed energy resources; microgrid; economic dispatch; multi-area; improved direct
search method; linear programming

1. Introduction

Energy efficiency, economic dispatch (ED), and greenhouse gas emissions are major issues
associated with utilities. Although electrical energy has been used for over one hundred years
since the first electric network was established in 1882 at the Pearl Street Station in New York by
Thomson Edison [1], the development of power systems has evolved into generation, transmission,
and distribution with a vertical system architecture. In a vertical system structure, a generation system
is composed of major large centralized thermal power plants, minor large reservoir hydroelectric power
plants, and a small portion of renewable energy generation. Carbon dioxide and other greenhouse
gas emissions caused by thermal power plants exacerbate global warming because of the usage of
carbon-based fuels in such plants. The electrical energy produced is delivered through transmission
and distribution systems until it reaches customers. Electrical energy losses during transmission are
considerable. Such losses not only affect the environment, but also reduce the overall system efficiency.
Consequently, the traditional large centralized power system architecture is impractical in terms of high
efficiency, energy savings, and environmental protection. Conversely, Distributed Energy Resources
(DERs) composed of distributed generations (DGs) and energy storage devices [2] are incorporated
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in local high- or low-voltage distribution networks to satisfy the load demand. As such, DERs can
reduce the losses caused by power delivery, and renewable energy-based wind turbine, solar power,
or relatively clean units, such as fuel cells and microturbines, can be utilized to reduce greenhouse gas
emissions and environmental impact.

DERs interconnected into an existing power grid to form an area grid, which can be operated
in grid-tied or autonomous modes, are called MGs [3]. The power grid integrated with information
and communication technologies is a smart grid. The development of low-carbon central generation
and local energy networks has emerged as a new trend. Europe, the USA, Japan, and Canada have
been actively involved in pilot system construction and related research. For instance, the European
SmartGrids Technology Platform for future power grids began its work in 2005. This platform aims to
formulate and promote a vision for the development of electricity networks in Europe in 2020 and
beyond [4]. Future power systems will be composed of low-emission power plants, solar energy, wind
turbines, biomass, ocean wave energy, hydroelectric, microturbines, gas turbines, fuel cells, and energy
storage devices. As a result, the operation of the future electricity network will be shared between
central and distributed generators. Thus, the control of distributed generators can be aggregated
to form MGs or virtual power plants (VPPs) to facilitate their integration in physical systems and
in markets. Overall, the planning, design, control, and operation of MGs are essential, especially
the on-line management or optimal dispatch of various types of DG in an MG under grid-tied and
autonomous operation modes. The optimal dispatch of future power grids integrated with MGs as
VPPs for safety, economic, and energy loss reduction planning and operation is also relevant in power
system research.

ED problems in traditional power systems should be solved in terms of the total minimum
operation costs by adjusting the output of each generator to satisfy the load demand and related
operational constraints. Since 1920, several power engineering experts and scholars have conducted
relevant research. ED problems are based on circuit and optimal theories. The primary task aims to
obtain real-time system states, and the power flow algorithm is applied to determine the exact bus
voltages and line flows of power systems via traditional AC power flow method [5–8]. Although
solutions generated by such methods are precise, they require time-consuming processes and iterations
and exhibit a convergence problem. Newton-Raphson method and Gauss-Seidel method are not
applicable for the real-time calculation of power flows. The methods of network sensitivity factors,
such as generation shift distribution factor [9], generalized generation shift distribution factor [10],
Z-bus distribution factor [11], and Jacobian-based distribution factor (JBDF) [12], have been proposed
to improve the computation speed and to eliminate the need for iterations. The application of these
approaches overcomes the weakness of Newton and Gauss-based power flow algorithms in ED.
Common optimal algorithms in ED and unit commitment are based on Lagrange multiplier-based
methods [13,14] and meta-heuristic approaches [15]. Soroudi and Rabiee [16] proposed a new model to
solve the multi-area dynamic ED problem by considering the uncertainties in wind power generation,
energy prices, and system demands. Optimality condition decomposition is also utilized to verify the
proposed approach for the real-time operation of practical power systems. Niu et al. [17] presented
an improved quantum-behaved particle swarm optimization (QPSO) to solve the ED problems with
valve-point effects and multiple fuel options. This method connects the basic QPSO [18] with a selective
probability operator to preserve the fast convergence characteristics and to reduce suffering from
premature convergence. Cheng and Zhang [19] combined a dynamic economic dispatch model and
an improved particle swarm optimization (PSO) approach to solve the ED problem considering the
uncertain nature of wind generation. Li et al. [20] proposed a Quasi-Newton method to update the
multiplier, together with an initialization strategy for the multipliers and the approximation matrix.
It can be used in dynamic economic dispatch to large-scale integration of renewable generation in
power systems. Zaman et al. [21] presented a self-adaptive differential evolution and a real-coded
genetic algorithm to solve the dynamic dispatch problem, simulation results demonstrated that the
approach is with high solution quality and reliability. Liu et al. [22] introduced an inexact mix-integer
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two-stage programming model to address low-carbon energy systems in terms of costs, energy
security, and carbon dioxide emission. In a previous study [23], fruit fly algorithm is applied to
solve an optimal dispatch problem in power systems with a VPP. This algorithm is a nonlinear
mixed-integer programming with inter-temporal constraints, and the proposed approach can manage
the optimal dispatch strategy among DGs in a VPP and a trading plan with electricity market. Although,
these algorithms provide solution quality, convergence speed, and robustness depending on their
applications. However, all the related studies mentioned above seldom consider the distribution
substation-level MGs in ED problems in modern power systems. This is vital because of the inclusion
of MGs in power systems will significantly affect the power dispatch due to the large magnitude of
the import and export power flows. Therefore, in this study, an innovative three-stage approach is
proposed for the ED of modern power systems comprising MGs as VPPs. The ED model that is derived
by the network sensitivity factors in main power grid is with high efficiency and without iteration
problem after load changes; besides, the improved direct search method (IDSM), which is with easy
and fast characteristics is proposed for optimal dispatch in MGs. Finally, the power exchanges between
the main power grid and MGs are modeled by linear incremental model for solving the entire system
ED problem by linear programming method. Consequently, this new approach can be utilized for
smart grid applications. This paper is divided into five sections. Section 1 introduces the background
and objectives of this study. Section 2 describes the traditional Lagrange multiplier-based ED and
optimal dispatch in MGs and then derives the proposed three-stage ED model. Section 3 explains
the solution procedure of the proposed model. Section 4 discusses the simulation results. Section 5
presents our conclusions.

2. Problem Description and Formula Derivation

MGs play important roles as VPPs in power system operations. Therefore, power systems will be
composed of the main power grid and several MGs. The generation dispatch corresponding to load
demand will become highly complicated in the near future. In this section, the ED problem is divided
into four parts, namely, system structure, ED model of the main power grid, ED model of the MG,
and integrated ED model of the power system.

2.1. System Structure

Figure 1 illustrates the system structure of a power system that consists of the main power grid
and N distribution substation-level MGs. In terms of transmission systems, the distribution networks
with DERs and loads can be regarded as MGs at the primary side of the main transformer as the point
of common coupling. According to a multi-area ED model, power systems can be partitioned into the
main power grid and a MG in each area. The MG in each area is considered a VPP, which is composed
of diesel engine generators, fuel cells, microturbine generators, wind turbine generators, photovoltaic
systems, and loads.

2.2. ED of the Main Power Grid

The ED in the main power grid can be described as follows:

min J =
NG

∑
i=1

fi(PGi), (1)

subject to:
NG

∑
i=1

PGi − PD − PL = 0, (2)

Pmin
Gi ≤ PGi ≤ Pmax

Gi ∀i = 1, ..., NG, (3)

−Pmax
m ≤ Pm ≤ Pmax

m ∀m = 1, ..., NL. (4)



Energies 2016, 9, 976 4 of 18

where ƒi and PGi represent the cost function and power generation of the ith thermal generator unit,
respectively; PD denotes the total power demand in the main power grid; PL is the transmission loss;
and Pm is the real power flow in the ith transmission line. Using Lagrange multiplier and adding
equality constraints, we can rewrite the optimal problem of ED as follows [24]:

L =
NG

∑
i=1

fi(PGi) + λ(PD + PL −
NG

∑
i=1

PGi) (5)

On the basis of Equation (5), we let partial L to PGi be 0, as shown in Equation (6):

∂L
∂PGi

= 0 (6)

Using Equation (6), we derive Equation (7):

∂ fi
∂PGi

= λ(1− ∂PL
∂PGi

), (7)

we let:
∂L
∂λ

= 0, (8)

equality constraints, where the generation is equal to the total demands plus losses, can be obtained,
as shown in Equation (2). In Equation (7), ∂PL/∂PGi is the incremental transmission loss (ITL),
and Equation (7) is rearranged as:

(
1

1− ITLi
)(

∂ fi
∂PGi

) = λ, (9)

we rewritten Equation (9) as:

P fi(
∂ fi

∂PGi
) = λ, (10)

where Pfi is equal to 1/(1− ITLi) corresponding to the penalty factor. Although ED problems can
be solved by artificial intelligence-based optimal algorithms, the Lagrange multiplier-based methods
remain the most reliable, most accurate, and fastest in practical system applications. On the basis of
Equations (9) and (10), we observe that the solution kernel of ED depends on the rapid calculation of
ITLi, Pfi, and PL, and the first task is to derive the mathematical model of PL to rapidly compute ITLi
and Pfi. The formula derivation is described in the following sections.

2.3. ED in a Microgrid

The DERs included in MGs are shown in Figure 1. In terms of the multi-area ED concept, the large
thermal power plants, transmission systems, and distribution substations in case of the Taipower
system regarded as equivalent loads can be formed as the main power grid, and partial distribution
stations whose distribution networks with DERs and loads are developed as MGs. Consequently,
the primary task of the integrated ED problem in modern power systems is the optimal dispatch in
MGs. Thus, the first step is to establish the cost function in an MG.

Similar to large thermal units, the fuel cost of a diesel engine generator is the quadratic polynomial
function of its actual power output. However, the fuel cost of a fuel cell generation system is the linear
function of its actual power output and efficiency. Therefore, the aggregate cost function of the MG
is combined with nonlinear and linear functions. This problem can be solved by direct or indirect
search algorithms, where the direct search algorithm called nongradient or zeroth-order method only
considers objective function and the indirect search algorithm should consider the partial derivatives
of objective function. In this study, an IDSM is proposed to solve the optimal dispatch problem in MGs
effectively. In general, a direct search method (DSM) [25] is unsuitable for large-scale systems. The first
step of this search approach is to set the incremental cost (IC) value (∆P). The unit with the minimum
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IC value is then selected to increase the generation until the IC of each unit is equal and thus satisfies
the power balance equation. The weakness of this search method is the start point, that is, it usually
starts from 0. As such, the searching time becomes lengthy. The proposed IDSM can improve the
limitation of the DSM. The first step is to obtain the ICs of all units, including fuel cell and microturbine
with linear costs, as shown in Equations (11) and (12):

fFCi = βiPFCi, ∀ i = 1, ..., NFC (11)

fMTi = γiPMTi, ∀ i = 1, ..., NMT (12)

where fFCi denotes the fuel cost of the ith fuel cell; βi and PFCi represent the cost coefficient and power
generation of the ith fuel cell unit, respectively. fMTi, γi, and PMTi are the fuel cost, cost coefficient,
and power generation of the ith microturbine unit, respectively. NFC and NMT represent the unit
number of fuel cell and microturbine in an MG, respectively. IC can be derived as follows:

ICFCi =
∂ fFCi
∂PFCi

= βi, (13)

ICMTi =
∂ fMTi
∂PMTi

= γi. (14)

The ICs of fuel cell and microturbine are constant, as shown in Equations (13) and (14). Therefore,
they can be sequentially arranged as follows:

ICA = [IC1, IC2, ..., ICN ], (15)

where IC1 < IC2 < ... < ICN , and N is the summation of NFC and NMT in MG-A. The fuel cost of
diesel engine generator can be expressed as follows:

fDGi = aDGi + bDGiPDGi + cDGiP2
DGi ∀ i = 1, ..., NDG, (16)

where fDGi denotes the fuel cost of the ith diesel engine unit; aDGi, bDGi, and cDGi are the cost
coefficients. NDG represents the unit number of the diesel engine unit in an MG. The IC can be derived
as follows:

ICDGi =
∂ fDGi
∂PDGi

= bDGi + 2cDGiPDGi, (17)

substituting the IC1 of Equation (15) in Equation (17) results in:

P0
DGi =

IC1 − bDGi
2cDGi

, (18)

the initial generation, P0
DGi, is started, as shown in Equation (18). PDGi is gradually adjusted according

to the proposed IDSM method until this procedure satisfies the power balance equation, as shown in
Equation (19):

NDG

∑
i=1

PDGi +
NFC

∑
i=1

PFCi +
NMT

∑
i=1

PMTi = PDA + PLA − PPV − PWT , (19)

where PDA is the total power demand in MG-A, PDA is the real power loss in MG-A, PPV is the power
generation of photovoltaic in MG-A, and PWT is the power generation of wind turbine in MG-A.
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Figure 1. Structure of a power system considering N distribution substation-level MGs.

2.4. ED Integrated with Main Power Grid and MGs

In this section, the integrated model of the main power grid and MGs is derived on the basis of
Sections 2.2 and 2.3. According to the multi-area dispatch concept, the completed ED problem involves
three stages:

• Stage I: ED in main power grid
• Stage II: ED in each MG
• Stage III: integrated ED of main power grid and MGs

The ED in stage III is based on those in stages I and II. The detailed derivation in each stage to
establish the linear increment model is described as follows.

2.4.1. Thermal Unit in Main Power Grid

The linear cost model of the thermal power unit in the main power grid is expressed as Equation (20).
The coefficient of each unit depends on the power plant type:

∆ fi =
∂ fi

∂PGi
∆PGi = (bi + 2ciP0

Gi)∆PGi (20)
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2.4.2. NonRenewable Unit in MGs

The linear cost models of diesel engine, fuel cell, and microturbine units in an MG are expressed
as Equations (21)–(23), respectively:

∆ fDGi =
∂ fDGi
∂PDGi

∆PDGi = (bDGi + 2cDGiP0
DGi)∆PDGi (21)

∆ fFCi =
∂ fFCi
∂PFCi

∆PFCi = βi∆PFCi (22)

∆ fMTi =
∂ fMTi
∂PMTi

∆PMTi = γi∆PMTi (23)

2.4.3. Linear Programing Model of ED

The linearized dispatch model is established in stage III on the basis of the linear cost model
described in Sections 2.4.1 and 2.4.2 and is solved by the linear programming method. The objective
function is expressed as follows:

min J =
NG

∑
i=1

∆ fi +
NDG

∑
i=1

∆ fDGi +
NFC

∑
i=1

∆ fFCi +
NMT

∑
i=1

∆ fMTi, (24)

subject to:
NG

∑
i=1

∆PGi − ∆PL − PeA = 0, (25)

NDG

∑
i=1

∆PDGi +
NFC

∑
i=1

∆PFCi +
NMT

∑
i=1

∆PMTi − ∆PLA + ∆PeA − ∆PDA = 0, (26)

∆Pmin
Gi ≤ ∆PGi ≤ ∆Pmax

Gi , (27)

∆Pmin
DGi ≤ ∆PDGi ≤ ∆Pmax

DGi , (28)

∆Pmin
FCi ≤ ∆PFCi ≤ ∆Pmax

FCi , (29)

∆Pmin
MTi ≤ ∆PMTi ≤ ∆Pmax

MTi , (30)

where PeA is the power interchange between the main power grid and MG-A, and positive PeA means
that power is fed into MG-A. These equations can be expressed as a standard linear model as follows:

min J= CTx, (31)

subject to: 
a11x1 + a12x2 + · · ·+ a1N xN = b1
...

...
...

...
aN1x1 + aN2x2 + · · ·+ aNN xN = bN

, (32)


xmin

1 ≤ x1 ≤ xmax
1

...
xmin

N ≤ xN ≤ xmax
N

, (33)

each extreme point is gradually searched in accordance with the linear programming method.
The optimal power generation of each unit is derived, as shown in Equations (34)–(37). The optimal
ED solution of power systems considering MGs as VPPs can be obtained:

PGi = P0
Gi + ∆PGi, (34)
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PDGi = P0
DGi + ∆PDGi, (35)

PFCi = P0
FCi + ∆PFCi, (36)

PMTi = P0
MTi + ∆PMTi. (37)

3. Solution Procedure

In this section, the detailed solution algorithm and model of the main power grid and MGs are
explained. The proposed approach can be applied in multi-area complex power systems. The solution
procedure is described as follows.

3.1. Stage I

The JBDF [12]-based Lagrange multiplier method is proposed to solve the ED in the main power
grid. A power flow program should be executed to solve the ED problem in each iteration by the
traditional Lagrange multiplier method. However, this procedure is time consuming and may result in
divergence condition. The key point is to obtain the ITL and penalty factor (Pf ) efficiently after the
load demand and generation are changed. The JBDF-based formula is derived to obtain ITL and Pf in
the ED procedure instead of running a power flow program and to overcome the weakness of ITL and
Pf derivation after load demand changes.

3.1.1. Models of Transmission Line Loss and Line Flow

Pm and Qm represent the line m flows of real and reactive powers, and the transmission line loss
PL is expressed as follows:

PL =
NL

∑
m=1

Rm · (P2
m + Q2

m) ∀m = 1, ..., NL, (38)

where Rm denotes the resistance of line m, and NL is the number of transmission lines. The real and
reactive power line flows can be expressed as [12]:

Pm = P0
m +

NG

∑
i=1

Fp(m, i) · ∆PGi +
NG

∑
i=1

Kp(m, i) · ∆QGi (39)

Qm = Q0
m +

NG

∑
i=1

Fq(m, i) · ∆PGi +
NG

∑
i=1

Kq(m, i) · ∆QGi, (40)

in the ED procedure, the real power is generally only adjustable using generators corresponding to
load demand changes, and the reactive power is kept constant. Consequently, Equations (39) and (40)
are simplified as Equations (41) and (42), respectively. ∆PGi is the change in the real power of the ith
generator from the base case:

Pm = P0
m +

NG

∑
i=1

Fp(m, i) · ∆PGi (41)

Qm = Q0
m +

NG

∑
i=1

Fq(m, i) · ∆PGi (42)

∆PGi = PGi − P0
Gi (43)

where Fp and Fq are the distribution factors of JBDF, which are expressed as Equations (44) and (45),
respectively:

Fp(m, i) =
∂
∣∣Vp
∣∣

∂Pi
· ∂Pm

∂
∣∣Vp
∣∣ + ∂

∣∣Vq
∣∣

∂Pi
· ∂Pm

∂
∣∣Vq
∣∣ + ∂δp

∂Pi
· ∂Pm

∂δp
+

∂δq

∂Pi
· ∂Pm

∂δq
(44)
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Fq(m, i) =
∂
∣∣Vp
∣∣

∂Pi
· ∂Qm

∂
∣∣Vp
∣∣ + ∂

∣∣Vq
∣∣

∂Pi
· ∂Qm

∂
∣∣Vq
∣∣ + ∂δp

∂Pi
· ∂Qm

∂δp
+

∂δq

∂Pi
· ∂Qm

∂δq
(45)

where ∂
∣∣Vp
∣∣/∂Pi, ∂

∣∣Vq
∣∣/∂Pi, ∂δp/∂Pi and ∂δq/∂Pi represent the magnitude and phase angle of the

bus voltage sensitive to real power injections. These terms can be calculated in the inverse Jacobian
matrix of the base case power flow solution.

3.1.2. Formula of ITL and Penalty Factor

The partial derivatives of Equation (38) and the JBDF-based ITL can be derived as Equation (46).
Pf can be calculated by 1/(1− ITLi):

ITLi =
∂PL
∂PGi

= 2
NL

∑
i=1

[
Pm · Fp(m, i) + Qm · Fq(m, i)

]
, (46)

3.1.3. Model of JBDF-Based ED

Based on Equations (2) and (7), the model of JBDF-based ED conditions is rewritten as follows:

Fi =
∂L

∂PGi
= bi + 2ci · PGi + λ(1− ITLi) = 0, (47)

FNG+1 =
∂L
∂λ

=
NG

∑
i=1

PGi − PD − PL = 0, (48)

extending Equation (48) to all units results in (NG + 1) simultaneous nonlinear equations in a matrix
form as follows:  0− F1

...
0− FNG+1

 =

[
J1 J2

J3 J4

] 
∆PG1

...
∆PGNG

∆λ

, (49)

Equation (49) can be solved by the Newton-based algorithm, where J1, J2, J3, and J4 are the
sub-matrices of Jacobian matrix, as explained in the following section.

The diagonal and off-diagonal elements of J1 are expressed as follows:

∂Fi
∂PGi

= 2ci − λ(
∂ITLi
∂PGi

) = 0, (50)

∂Fi
∂PGj

= −λ(
∂ITLi
∂PGj

), j 6= i, (51)

the partial derivatives of ITL are shown in Equations (52) and (53):

∂ITLi
∂PGi

= 2Rm

NL

∑
i=1

[
F2

p(m, i) + F2
q (m, i)

]
, (52)

∂ITLi
∂PGj

= 2Rm
[
Fp(m, i) · Fp(m, j) + Fq(m, i) · Fq(m, j)

]
, j 6= i, (53)

the elements of J2 are:
∂Fi
∂λ

= 1− ITLi, (54)

the elements of J3 are:
∂FNG+1

∂PGi
= 1− ITLi, (55)
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the elements of J4 are:
∂FNG+1

∂λ
= 0, (56)

the model of the JBDF-based ED in the main power grid can be derived according to these equations.
The solution flow chart is shown in Figure 2. The solution is obtained when the convergence conditions,
∆P and ∆λ, are less than a specified accuracy, i.e., ε. On the contrary, it is divergence, the iterations
will reach to maximum iteration number and then stop the iteration procedure. It is worth noting that
the Newton-based algorithm is sensitive to the initial guess value. In general, the physical meaning of
λ is the system incremental cost of delivered power; therefore, the initial value could be guessed in a
reasonable range according to the average cost per megawatt for avoiding the unreasonable solution
or divergence.
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3.2. Stage II

The DERs are divided into nonrenewable and renewable units. The cost functions of nonrenewable
units and the prediction of the available power of renewable units are essential for optimal dispatch in
an MG. The characteristics of the DERs are described as follows.
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For the nonrenewable units, the fuel cost of a diesel engine generator is expressed as Equation (16),
and the total fuel cost of diesel engine units in MG-A are shown in Equation (57). Molten carbonate
fuel cells and solid oxide fuel cells are used in this study. The fuel cost of the fuel cell unit is shown in
Equation (11), and the total fuel cost of fuel cell units in MG-A is shown in Equation (58). Similar to the
cost function of the fuel cell unit, the fuel cost of the fuel cell unit is shown in Equation (12), and the
total fuel cost of fuel cell units in MG-A is shown in Equation (59):

FDG(A) =
NDG

∑
i=1

aDGi + bDGiPDGi + cDGiP2
DGi (57)

FFC(A) =
NFC

∑
i=1

βiPFCi (58)

FMT(A) =
NMT

∑
i=1

γiPMTi (59)

The power output of the wind turbine unit is expressed as Equation (60), where Cp is the power
coefficient, ν is the air density, Vw is the wind velocity, and A is the rotor swept area. The total
power generation of wind power units in MG-A is shown in Equation (61). The power output of the
photovoltaic module can be expressed as Equation (62), with the measured solar irradiation (W/m2)
and ambient temperature (◦C), where Pstc is the maximum power at the standard test condition,
Ging is the incident irradiance, Gstc is the irradiance at the standard test condition (1000 W/m2), k is
the temperature coefficient of power, Tc is the cell temperature, and Tr is the reference temperature.
The total power generation of photovoltaic units in MG-A is shown in Equation (63). Therefore,
the renewable units are regarded as negative power loads in optimal dispatch in MGs:

PWT =
1
2

CpνV3
wA (60)

PWT(A) =
1
2

NWT

∑
i=1

CpiνV3
wA (61)

PPV = PSTC
GING
GSTC

[1 + Ki(Tc − Tr)] (62)

PPV(A) =
NPV

∑
i=1

PPV (63)

On the basis of the cost function and power generation of each unit, we can express the objective
function for the optimal dispatch problem in MG-A as follows:

min FT(A) =
NDG

∑
i=1

fDGi +
NFC

∑
i=1

fFCi +
NMT

∑
i=1

fMTi, (64)

subject to:

NDG

∑
i=1

PDGi +
NFC

∑
i=1

PFCi +
NMT

∑
i=1

PMTi = ∆PD(A) + ∆PL(A) − ∆PWT(A) − ∆PPV(A), (65)

Pmin
DGi ≤ PDGi ≤ Pmax

DGi , (66)

Pmin
FCi ≤ PFCi ≤ Pmax

FCi , (67)

Pmin
MTi ≤ PMTi ≤ Pmax

MTi . (68)
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Finally, the IDSM is proposed to solve the optimal dispatch in an MG, and the solution flow chart
is shown in Figure 3.
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3.3. Stage III

In stage III, the linear incremental model of the entire power system is established on the basis
of the optimal dispatch solutions of the two previous stages. Considering the power interchange of
MG-A, PeA, into the main power grid, we can obtain the linearly optimized model of the main power
grid and MG-A. The linearly optimized model in stage III can be derived by increasing N number of
MGs in the power system, as shown in Equation (69):

min J =
NG

∑
i=1

∆ fi +
N

∑
j=A

NDG

∑
i=1

∆ fDG(j,i) +
N

∑
j=A

NFC

∑
i=1

∆ fFC(j,i) +
N

∑
j=A

NMT

∑
i=1

∆ fMT(j,i) (69)

According to the linear model and satisfying the related constraints, the optimal dispatch
generations are solved by linear programming. The optimal solution of the entire power system
with MGs as VPPs can also be found.
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4. Numerical Results and Discussion

An effective ED program is coded in the Matlab environment according to the proposed
three-stage model and solution algorithms. The proposed approach is first used to evaluate the
ED problem of the original IEEE 14-bus test system and to verify the accuracy and effectiveness of the
proposed approach, and the related parameters for power flow and ED are obtained from previous
studies [25,26]. In this scenario, the MG is assumed to be operated autonomously and therefore not
considered in ED in the main power grid for the comparison of the traditional Lagrange multiplier
method and the proposed approach based on the known results. The numerical results (Table 1)
demonstrate that the developed ED program is valid. The ED problem of the main power grid
considering MGs is then solved by using the three-stage ED program.

Table 1. Comparison of the simulation results of the traditional Lagrange multiplier method and the
proposed approach for the ED of the original IEEE 14-bus test system.

Bus No.
Traditional Lagrange Multiplier (A) Proposed Approach (B) Error %

Generation (MW) Generation (MW) |1 − B/A| × 100

1 160.450 160.460 0.0062
2 68.803 68.810 0.0102
6 39.567 39.550 0.0430

Total cost ($/h) 1137.7 1137.7 0.0000
Real power loss (MW) 9.82 9.82 0.0000

λ 405.4473 405.4590 0.0029
CPU execution time (s) 0.188 0.047 -

The IEEE 14-bus test system and an MG (Figures 4 and 5) are modified as a sample system to verify
the feasibility and accuracy of the proposed approach. The equivalent lumped daily load demand
curves of the main power grid are illustrated in Figure 6. The equivalent daily load demand curves that
correspond to different load types at each bus are shown in Figure 7. The purchased/sold electricity
cost of MG-A are depicted in Figure 8. This cost comprises the peak-load (0.2392 $USD/kW·h),
half-peak-load (0.0894 $USD/kW·h), and off-peak-load (0.0447 $USD/kW·h) pricing from the main
power grid during the summer season. On the basis of the three-stage ED algorithm and constraints,
we show the numerical results of the optimal dispatch of each generator in the main power grid in
Figure 9, and the optimal power interchange between the main power grid and MG-A is shown in
Figure 10. The numerical results of the generation cost per kWh and the total generation cost of the
sample system are illustrated in Figure 11a,b, respectively. The numerical results also demonstrate
that the bus voltage, current flow, and power generation limits of each unit are consistent with the
constraints. The executing time of the proposed approach is around 25% of the traditional Lagrange
multiplier method in the IEEE 14-bus test system with a MG; furthermore, there is no divergence
problem for power flow solution of the proposed approach because of no iteration after load demand
changes. Therefore, the performance of both computation time and reliability of the proposed approach
is superior to those of the traditional Lagrange multiplier method. Hence, the proposed approach
exhibits high efficiency and rapidly solves the ED of power systems considering MGs as VPPs.
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Figure 11. Numerical results of the generation cost per kWh and total generation cost. (a) generation
cost per kW-hour; (b) total generation cost.
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5. Conclusions

In this study, effective and fast three-stage ED model and approach are proposed to solve the
problem of modern power systems considering MGs as VPPs. Using the traditional Lagrange multiplier
method, we derive the JBDF-based ED algorithm for stage I dispatch according to the network
sensitivity factors in the main power grid, and the IDSM for stage II is developed for the optimal
dispatch in an MG. The linear incremental model and solution algorithm for stage III are obtained
and integrated with stages I and II. For the algorithms proposed in this paper, the power systems are
divided into the main power grid and area MGs. The ED problem is solved on the basis of the concept
of multi-area ED by using the proposed three-stage approach. Besides, the traditional methods of
ED required iterations in each solution procedure; nevertheless the proposed approach only need to
execute one iteration procedure by Newton algorithm as base case and then without any iteration
after load demand changes. It is absolutely verified that not only the computing speed but also the
convergence are superior to other methods that need iterations after load demand changes in real-time
dispatch. The numerical results of the test system demonstrate that the proposed approach exhibit
high accuracy and efficiency. Therefore, this approach is helpful for optimal dispatch because of the
large amounts of DERs interconnected into distribution systems. The proposed approach can also be
utilized to solve the area power dispatch problems because of the distribution systems formed as MGs,
which are regarded as VPPs for future smart grid applications.
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