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Study on Integration of Reconfiguration and Phase balancing for Optimal
Dynamic Radial Topologies Operations in Distribution Networks
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Abstract

Distribution system operators used to utilize topology
reconfiguration and load phase arrangement to reduce
system loss, rise system stability and reliability. However,
it is unable to reach the optimal operation if both of them
work individually. In this paper, an integrated dynamic
topology reconfiguration and phase balancing optimal
operating simulation platform is proposed and validated by
a sample distribution system. The proposed method can
formulate the optimal topologies for each operating
scenario and optimal phase arrangement for each season
while keeping the radial configuration of feeders, to achieve
the comprehensively optimal operation in a year.
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I. Introduction

The distribution networks (DNs) operating
optimization has various aspects and has been developed
and researched in many literatures. Optimal operation can
be divided into three parts: long-term operating planning,
mid-term operating planning, and short-term operating
control. The topology design, sizing and allocation of
power elements such as distributed energy resources (DER),
battery energy storage system (BESS), and capacitor are the
long-term operating planning; the transformer phase

arrangement is the mid-term or short-term operating
planning; whereas the short-term operating control contains
switching scheme, smart inverter control, dispatch of BESS,
capacitor and on-load tap changer (OLTC), etc. The feeder
dispatch control center (FDCC) will integrate the
information of the DN and optimize the system operation
for each aspect.

The topology reconfiguration is based on the remotely
controllable tie-switches and the feeder switches. Initially,
the automatic feeder switch (AFS) is used to reduce the
system average interruption duration index (SAIDI) and
system average interruption frequency index (SAIFI) by
applying to the fault location, isolation, and service
restoration (FLISR). When a permanent fault occurs,
customers in healthy segments of the feeder may
experience a lengthy outage, FLISR provides an effective
approach to restore service to some customers before field
crews arrive on the scene. Moreover, AFS is utilized to
accommodate higher penetration of DER and balance the
load between each feeder for normal short-term operating
control. Not like the switching schedule by remote control,
the transformer phase arrangement is a mid-term operation
planning. In Taipower routine operation work, this job
would be done once every month or season.

On the issue of DN optimal operation, the topology
reconfiguration and phase arrangement would be seldom
absent. The studies on switching scheme have kept
appearing frequently in smart grid flexibility field for a long
time. For this study, the time series switching strategy is
focused on for the annual simulation. The literatures [1-5]
was referred because the methods of dynamic switching
scheme, load transfer, and network reconfiguration are
proposed and conducted very well.  Reference [6-9]
provide the phase rearrangement method to improve the
three-phase unbalance and the comparison of neutral
current decline rate. In this paper, the topology
reconfiguration and load phase rearrangement are
optimized simultaneously to achieve the comprehensive
optimal operation.



II. Sample Distribution Network

Before starting to explain the optimization method, the
sample DN is described in advance. In order to simulate the
coordination of the load transfer between feeders and
comprehensive  operational optimization, a multi-
secondary substations (S/S) and multi-feeders DN with
high renewable DERs penetration is chosen to be the
sample system in this paper, as shown in Fig. 1. The sample
system is an 11 kV radial distribution system having two
substations, four feeders, 70 buses, and 78 branches
(including 11 tie-branches) [10], and 19 switches assumed.
The feeders F1 and F2 are fed by S/S-1; and the feeder F3
and F4 are fed by S/S-2. The 11 tie-branches (TSs) tie-
1~tie-11 which are normally opened interconnect with these
four feeders. The DERs are placed throughout feeders, the
type, size, and location of renewable DGs are assumed in
this paper, as listed in Table 1
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Fig. 1 Single line diagram of the sample DN

Table 1 The rated outputs, types, and locations of the DGs

Feeder Type Location Bus Rated output(kW)
PV 5,11, 14 125, 25,75
F1 Wind 68 50
biomass 3,8 25,50
PV 18,19, 29 75,100, 125
F2 Wind 26 100
biomass 22,24 50, 25
PV 33,34, 41,45 75, 100, 100, 150
F3 Wind 38,48, 49 50, 75, 50
biomass 43 75
PV 56, 59, 63, 65,67 150, 25, 100, 150, 100
F4 Wind 54 100
biomass 57,61 50, 50

For the time series based simulation, the dynamic load
and DG generation data must be considered. The entire
annually patterns of load and renewable DGs generation are
used to calculate the yearly sequential power flow, so that
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the dynamic MG boundaries can be decided by the solution
results. Four types of load pattern are used to the four
feeders, which are office, residential, industrial, and
commercial, respectively. These four types of weekly load
pattern are shown in Fig. 2. In addition, the daily pattern
average power output of wind and PV for each month are
presented to depict the characteristics of the renewable
generation, as shown in Fig. 3. It’s clear from this patterns
that the PV output is higher in daytime and summer; the
wind power output is higher in winter.
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Fig. 2 Weekly load pattern

Daily average output of wind and solar power for each month
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Fig. 3 Daily pattern of power output of wind and PV for
each month

III. Optimization Method

3.1 Problem Description

The three-phase unbalance in DNs is caused by the
single phase distribution transformers or laterals,
symmetrical three-phase distribution transforms with
unbalanced loads, and the asymmetrical three-phase
distribution transformers like U-V connection and V-V
connection. The U-V connection, also known as open-wye
and open-delta connection, is a three-phase arrangement
that makes use of only two, instead of three, single-phase
transformers which is modified from wye-delta connection.
Likewise, the V-V connection, also known as open-delta



connection, is modified from delta-delta connection. These
asymmetrical connections are sometimes used in
distribution transformers for economy and saving space;
however, the problems of three-phase unbalance hence
exacerbated. The possible connection schemes for the
three-, two-, or single-phase transformers and laterals are
different. To solve this problem, all the connection of
transformers on the feeders must be rearranged to make the
loads evenly distributed to each phase. All six types of
three-phase transformer connection schemes are shown in
Fig. 4, and the optimization algorithm is used to find the
best arrangement of all transformers connection varying
among these six types for each season.

Type 1 Type 2 Type 3
A A A
B B B
C C %%; C
S. Sy S S, S S. Sa Sy Sc
Type 4 Type 5 Type 6
A A A
B B B
| | ??%z |
S: Sy Se S: Sy S. Sa S, S.

Fig. 4 Six types of three-phase transformer connection
scheme

Topology reconfiguration in DNs is based on the
switching scheme, the loads transfer between feeders can
balance them and reduce the line loss. For annual
simulation, the entire year is divided into 16 scenarios as
shown in Table 2.

Table 2 Operating scenarios

Scenario
; Spring Weekday I\]IDiZit
i (Mar, Apr, May) Weekend I\Iljizit
2 Summer Weekday I\lfjigﬁt
; (Jun, Jul, Aug) Weekend I\Il)i;;t
190 Fall Wecekday I\]I)igt
}; (Sep, Oct, Nov) Weekend I\lljig%/t
i 431 Winter Weekday I\]I)iZit
:Z (Dec, Jan, Feb) Weekend I\Il)i;;t

In Table 2, the year is divided into four seasons: spring,
summer, fall, and winter; each season is represented by two
day types: weekday and weekend day; each of these days is
divided into two periods: day and night. Therefore, the
entire year is represented by 16 different operating
scenarios (4 seasons/yearsx2 days/seasonx2 periods/day).
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The topology reconfiguration scheme is based on these
scenario to reach the optimal operating planning.

3.2 Multi-objective Programming

Three-phase unbalance is one of the main problem in
DN, it cause the increasing line loss, reverse torque of
motor, and the malfunction of LCO relay in severe case. As
far as system operation is concern, the system loss, voltage
profile, neutral current, and load balancing between feeders
is the most important for improving the power quality.
These problems are the optimization objectives in this study,
which is line loss, voltage profile, and neutral current in
feeder outlet, respectively. Especially, neutral current in
feeder circuit breaker (FCB) may give rise to malfunction
of LCO protective relay in the three-phase, four-wire DN,
as shown in Fig. 5. The current of LCO is formulated as the
three-phase current, which is equal to the neutral current. In
Taipower, the LCO relay tripping setting limit value is
around 70 A, and the LCO detects the neutral current over
70 A to trip the unbalanced short-circuit fault. Unfortunately,
the high neutral current, which is caused by unbalanced
loading and exceeds the limit value, can also lead to LCO
tripping.

Substation

Pl Lv fe{eder CcT >
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Fig. 5 The sinéle line diagram of LCO protective relay in
three-phase four-wire distribution systems.

Abovementioned problems must be optimized
simultaneously by algorithm, involving more than one
objective function to be minimized or maximized is termed
multi-objective  optimization problem (MOOP). The
methods to make trade-off between a set of feasible solution
is proposed in many literatures. Assume for minimizing a
bi-objective function (f;, />), the feasible solution space in
the coordinate plane is shown as Fig. 6. The points marked
by blue circle dominates the yellow one because blue one
is no worse than yellow one in all objectives. The non-
dominated solutions which are not dominated by any
member of the solution set is called the Pareto-optimal front
(POF). Point C is not on the POF because it is dominated
by both point A and point B, the points on POF is the set of
best solution of the MOOP.
feasible solution space
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Fig. 6 Illustration of feasible solution and POF



To approximate the POF, weighted metric method,
proposed by Zeleny in 1976 [11], Combine multiple
objectives using the weighted distance metric of any
solution from the ideal solution z*, described as

1

M P
minimize <Z Wi | fn () = Zi*lp)
m=1

M

M
subject to z Wy =1
m=1

where integer p=1,2,---,00. Fig. 7 illustrates the weighted
metric method. When p=1 it is similar to the weighted sum
method by setting the z* to (0, 0), as shown in Fig. 7 (a);
when p=2, it can be regarded as the weighted distance
between the solution and z* on plane coordinate, as shown
in Fig. 7 (b); when p—oo, it can approximate all Pareto-
optimal solutions, which is also called the weighted
Tchebycheff metric, as shown in Fig. 7 (¢). In this paper, the
weighted Tchebycheff metric is used to combine the total
line loss, voltage, and neutral line current in feeder outlet,
and approximate the POF of feasible solution.

1 fl

A

feasible solution space feasible solution space

POF
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feasible solution space

(Weighted Tchebycheff problem)

(¢) p—>
Fig. 7 lllustration of the weighted metric method

3.3 Constraints from Radial Topology

In this paper, the network topology must be kept radial.
Therefore, there is a challenge during the switching scheme
optimization because the switches operate randomly. To
solve this problem, all the possible radial topologies should
be identified, and only these topologies are worthy to
calculate in optimization algorithm. In reference [12], the
author proposed a procedure to identify all the possible
radial configuration extracted from the weakly meshed
structures of DNs based on the following steps:
Step 1) Create a reduced network structure which retains
the same number of branches installed switches of the
original network.
Step 2) Apply the reduced network of a simple
computational procedure which called backtracking-based
algorithm by graph theory described in [ 13] for identifying
the radial structures.
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Fig. 8 shows the reduced topology of sample system,
it contain 11 TSs (T1-T11), 19 switches (B1~B9), and 21
reduced buses. Notably, the bus 1 present both S/S-1 and
S/S-2 because they are regarded as one substation to
prevent the connection between them. Afterwards, the
backtracking-based computational procedure, which scans
from source to end of network to check if it is radial
configuration, is conducted to find all the possible radial
topologies for each scenario. However, possible topologies
is excessive, most of them are operationally improper, so it
is not necessary to consider all of them in algorithm. To find
the feasible radial topologies, the power flow snapshot of
original and all the possible radial topologies are solved by
distribution system simulator OpenDSS, and the topologies
whose system loss are lower than original topology are
chosen as the feasible topologies. These feasible switches
state are saved to a database and extracted during the

algorithm.
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Fig. 8 Reduced topology of the sample system

3.4 Particle Swarm Optimization Algorithm

The particle swarm optimization (PSO) algorithm,
proposed by Kennedy and Eberhart in 1995 [14], is a
computational method that optimizes a problem by
iteratively updating and improving the candidate solution.
This algorithm is inspired by the flocks of spicy bird
migration and forage behavior, two fundamental behaviors
of which is concluded to cognition-only model and social-
only model by observation. In a particle swarm, every
particle represents a potential solution, and each of them
owns its position and velocity. The movement of each
particle is updated by three velocity component which are
inertia (current motion influence), particle experience best
(particle memory influence), and group experience best
(swarm memory influence), as described in (2) and Fig. 9.

i+1

Up o= wvril + (pprand() (plivestn - Srll) + (pgrando (glizestn - Srll)
()
st = sk + vitt

where v} is the particle » movement velocity at the i
moment; and s; is the position of particle n at the i
moment. The parameters w, ¢,, and @, denote the
learning factor of inertia, particle, and swarm influence
respectively. rand() refers to the random number between 0
and 1.



i
p bestn

Swarm memory influence

Current motion influence

Fig. 9 Velocity component construction of PSO

The velocity of particle memory influence component
is called the cognitive learning model; whereas the swarm
influence one is referred to the social learning model. Thus,
two models iterate and derive the optimal solution in the
solution space. PSO is a metaheuristic as it makes few or
no assumptions about the optimization problem and can
search very large spaces of candidate solutions. However,
metaheuristics such as PSO is unable to guarantee a global
optimum must be found. In addition, PSO does not use the
gradient of the problem, which means PSO is not necessary
to make the optimization problem be differentiable which
is required by other iterative optimization methods such as
gradient descent. PSO is used to solve the MOOP in this
paper, each particle represent all the switching scheme and
connection scheme of transformers.

IV. Implementation of Proposed Platform

4.1 Overall Architecture of Proposed Platform

The architecture of proposed platform is shown in Fig.
10, and can be divided into main block and data exchange
block. Initially, the circuit model in OpenDSS and PSO
algorithm parameters setup are executed in main block,
then PSO randomly generate particle position and velocity
and input to data exchange block. The particles position are
converted to switch states and transformer connections, and
python give switching and rephase commands to OpenDSS
via COM. Next, OpenDSS solves circuit and returns annual
power flow to python. The PSO algorithm update particle
velocity and position base on the power flow over and over
again, finally it stop searches when the maximum number
of'iteration is reached and export and plot the optimal result.
Notably, the switches state is derived from a database which
collects the switches state of feasible radial topologies for

each scenario.
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4.2 Optimization Result and Discussion
Table 3 shows the PSO algorithm parameters of four
test cases. The objective function of the MOOP in this paper
(weighted Tchebycheff metric) is described as

Elioss - Elrg;? ? + AVi - AVmin P
w1 pmax _ pmin w2 Apmax _ Aymin

loss loss
1 A3)

Ii _ Imin p E
n—In
+ w3 (Imax _ Imin)

n n

where Ej, is the total energy loss (kWh); AV is the
average bus voltage drop (p.u.); Iiis the maximum neutral
current in FCBs (A). wq,w,, and w3 are the weights of
them respectively. p is set to 100 to approximate the non-
convex POF. Moreover, a normalization process
compresses each of objective into unit because of their
different scales. Case 1~3 only set one weight to 1 to
optimize one objective individually; case 4 average three
weights to optimize all the objectives. The optimal
solution of all cases compared are shown in
Table 4, Fig. 11 shows the iterative convergence
process of objective function.

OF =

Table 3 PSO parameters of four test cases

Parameters
Case  Swarm .
. Iterations w P Py w; W, w3

size
Case 1 from 1 0
Case 2 09t00.4 0 1

100 100 . 0.5 05
Case 3 during 0 0 1
Case 4 iteration 04 03 03

Table 4 Performance comparison of four cases

Result
Case Object Ejoss AV L (A)
function (kWh) (p.u.) "
Original - 312.5136 0.0161 28.61
Case 1 0.8735 272.9865 0.0155 27.32
Case 2 0.9509 286.7001 0.0153 38.54
Case 3 0.6322 288.2820 0.0161 18.09
Case 4 0.3520 275.0345 0.0155 22.98

terative process iterative process
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Fig. 11 Iterative process of objective function for each case

Fig. 12 shows the feeder total energy loss for each case.

Although the loss in feeder F1 and F2 increase in some
cases, the loss in feeder F4 decrease dramatically, the total
loss is hence reduced. The total loss is reduced by about
12.65 % in casel and 11.99 % in case 4, but even so, the
result of case 4 is preferred because the neutral current in
FCB can also be reduce to prevent the malfunction of LCO.

Total energy loss for each feeder Total energy loss for each feeder
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Fig. 12 Improvement of feeder total energy loss for each
case

Fig. 13 show the improvement of neutral current on
FCBs for case 3. It is distinct that the neutral current has
different average values for each season, because the
connection of transformers are rearranged seasonally. The
maximum neutral current in FCBs is reduced to 18.09 A in
case 3. The result of case 4 is preferred due to the higher
reduction of total energy loss.

The neutral current profile on FCB of feeder F1
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Fig. 13 Improvement of neutral current on FCBs for case 3

V. Conclusion

In this paper, an integrated dynamic topology
reconfiguration and phase arrangement optimization
simulation platform is proposed. Both of them are
optimized simultaneously while keeping the topology
radial configuration. The results show that the total energy
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loss is reduced because of the load balancing between
feeders, and the maximum neutral current on FCBs is
reduced due to the phase balancing. The outcomes of this
research are helpful for system operator; moreover, the
proposed systematic calculation and the comprehensive
optimization scheme can reduce operation cost, improve
the system stability and power quality efficiently.
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