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Abstract: Under the plan of net-zero carbon emissions in 2050, the high penetration of distributed
renewable energies in distribution networks will cause the operation of more complicated distribu-
tion networks. The development of edge computing platforms will help the operator to monitor and
compute the system status timely and locally, and it can ensure the security operation of the system.
In this paper, a novel EDGE computing platform that is implemented by a graphics processing unit
in the existing feeder terminal unit (FTU) is proposed for smart applications in distribution net-
works with distributed renewable energies and loads. This platform makes timely forecasts of the
feeder status for the next seven days in accordance with historical weather, sun, and loading data.
The forecast solver uses the machine learning long short-term memory (LSTM) method. Thereafter,
the power calculation analyzers transform feeder topology into the circuit model for transient-state,
steady-state, and symmetrical component analyses. An important-factor explainer parses the LSTM
model into the concise value of each historical datum. All information transports to remote devices
via the internet for the real-time monitor feature. The software stack of the EDGE platform consists
of the database archive file system, time-series forecast solver, power flow analyzers, important-
factor explainer, and message queuing telemetry transport (MQTT) protocol communication. All
open-source software packages, such as SQLite, LSTM, ngspyce, Shapley Additive Explanations,
and Paho-MQTT, form the aforementioned function. The developed EDGE forecast and power flow
computing platform are helpful for achieving FTU becoming an Internet of Things component for

smart operation in active distribution networks.

Keywords: edge computing; feeder terminal unit; long short-term memory; message queuing te-
lemetry transport; renewable energies forecasting; load forecasting

1. Introduction

The feeder terminal unit (FTU), which is the distribution automation for smart oper-
ations of active distribution networks (ADNs) that are composed of distributed renewable
energies and loads, measures the manner of power flow and sends it back to the Feeder
Dispatch Control Center (FDCC) without further manipulation. Nowadays, the underly-
ing standard functions of FTU are measurement, control, and fault detection [1]. How-
ever, the lack of analysis and computing capability is limited to ADN smart operations.
In Figure 1, we present a novel EDGE with functions in a timely feeder status forecast,
power flow analysis, important-factor explainer, and secured communication features in-
side a system-level platform.

The system is named EDGE because it works inside the FTUs, which are next to sub-
scribers. FDCC collects and sends data to the Distribute Dispatch and Control Centre
(DDCC) afterward. The results are shown on a mobile phone for localizing monitoring.
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Some edge computation platforms of the hybrid renewal energy ADNs are discussed
as follows. Kulkarni announced a similar concept, funded by the United States Depart-
ment of Energy, to establish a situational awareness system [2]. This framework is named
Global Asset Monitoring Management and Analytics. It contains functions of the power
quality sensor, the Advanced Metering Infrastructure network, and the transformer sen-
sor. After communicating data to a cloud server, mobile phones show their computation
results. Its intelligence feature relieves the on-demand connectivity burden to centralized
computation. Unfortunately, it is a low-cost platform, costing $4, without sufficient com-
putation resource information.
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Figure 1. Proposed EDGE platform and relations.

Another study dispatched the reactive power control of the service-transformer by
Moghe and Tholomier [3,4]. They presented the Edge of Network Grid Optimizer (ENGO)
platform, attached next to the transformer chassis, that regulates the voltage by switched
swarm capacitors. The cost and complexity of collecting all renewal energy utility situa-
tions and reporting to the FDCC become a challenge for rapid dispatch. A swarm of
ENGO platforms, on the Omega feeder, inject the reactive power from the fixed capacitor
bank to regulate the voltage variation.

Thus, the proposed EDGE platform improves these features by using the new silicon
technology chip and popular machine learning concepts. The platform has enhanced the
function of the existing FTU, and offloads the FDCC computation work. Information on
raw subscribers limits sharing to power generation and transmission companies by regu-
lations. DDCCs or Area Dispatch and Control Centers may process the subscribers’ fore-
cast work from many FTU terminals. This EDGE platform is designed to be handy in in-
stallation, and shares a centralized system risk. This paper presents a lab prototype con-
cept allocated inside the FTU chassis in Figure 2.
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Figure 2. The desired EDGE platform inside the TPC’s FTU chassis.

Generally, in Taipower, each feeder has three FTUs, one distribution substation bur-
den, and typically more than fifteen feeders. Therefore, more than 45 FTUs may serve in
a distribution substation. This is not to mention that more than three distribution substa-
tions are in each DDCC or FDCC management district. If all these load data are sent to a
local server in DDCC or FDCC to conduct an hour-ahead or 15-min-ahead forecast and
compute the factors, the computing load becomes too heavy to complete within the allot-
ted time. Consequently, EDGE is necessary to forecast the FTU [5] load data individually
and to merely send the forecast results to FDCC to integrate all the information, and to
make the correct or optimal decision. Furthermore, according to IEEE Std 1547.4-, distri-
bution systems can be clustered into a number of microgrids to facilitate powerful control
and operation infrastructure. Consequently, each FTU measurement area is planned as a
microgrid, a feeder is divided into three microgrids in this paper for additional smart op-
erations during normal operations or contingencies in the near future, and the multi-mi-
crogrid operation needs real-time computing without data transmission delay [5]. Accord-
ingly, the development of edge computing in FTU is indispensable. The corresponding
research is conducted in this paper.

Compared with a traditional microprocessor-based platform, the newly announced
EDGE platform installs the machine learning package in the computer language, Python,
and the corresponding acceleration circuit in its silicon chip. The cross-platform strength
migrates high-level software stacks from personal computers (PCs) to EDGE without
recompiling efforts. Thus, many available open-source software functions and researchers
associate the work in different locations and different programming machines.

The long short-term memory (LSTM) method predicts power consumption [6]. Wang
[7] proposed an EMD-PCA-RF-LSTM wind power forecasting model to improve the ac-
curacy of wind power forecasting, and the experiment result indicates this model pro-
vides the most accurate results. Nevertheless, the trained model has no explanation of its
important-factors association. A game-theory-based method, SHAP, parsed the LSTM
models and arranged them in the graphical expression in this study. The Ngspice simula-
tor is the power flow analyzer, and runs on EDGE’s distinctive CPU processor architecture
[8]. Zhang [9] and Huang [10] investigated the transient analysis of the railway traction
application in terms of the integration circuit elements under the personal computer en-
vironment. This concept inspires leverage of the Ngspice simulator as the power flow an-
alyzer, and runs on the EDGE’s distinctive CPU processor architecture [8] and Linux op-
eration system.

In communication, the message queuing telemetry transport (MQTT) protocol forms
the parties of the EDGE, broker, and mobile phone applications. Finally, the SQLite sys-
tem is the database archive that manipulates the real-time, historic, forecast, and analyzed
data and images during service time. Accordingly, the significant blocks of the EDGE plat-
form, which comprise the feeder forecast, power flow analyzer, important factor ex-
plainer, communication protocol, and database archive (SQLite), are proposed and shown
in Figure 3.
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Figure 3. Significant blocks in the proposed EDGE platform.

Section 2 briefly presents the system design concepts with designated modules, in-
cluding the LSTM model, power flow analyzers, and important-factor explainer function-
alities. Section 3 exhibits the detail of each associated function in Section 4. Finally, the
discussion and conclusion of each experiment are presented in Section 5.

2. System Design Concepts

This section presents the proposed system’s strengths, design constraints, and per-
formance considerations.

2.1. Platform Introduction

The new Nvidia™ Jetson Nano (Santa Clara, CA, USA) device is chosen because of
the low cost, Ubuntu operating system, 4 GB memory, 128 GB secure digital memory card
(SD card), machine learning optimization package, and graphics processing unit (GPU)
core features. The functions on the EDGE platform, which consist of different Python com-
puter language (Python) packages for associating the five blue blocks, are seen in Figure
4. In this paper, we reconfigured and compiled several source files implemented into the
EDGE platform as a computation engine. The complete computation platform software
stack is shown in Figure 4.
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Figure 4. Proposed EDGE platform, Nvidia® Jetson nano-device, and its software stacks.
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2.2. Data Assimilation

The data assimilation process arranges the forecast data from the public weather ser-
vice and power company. A government facility, Central Weather Bureau, offers weather
information through the Opendata API mechanism. The operation information is ob-
tained via DNP 3.0 [11,12] and IEC61850 [1] protocol using 4G or fiber media. Unfortu-
nately, data sample time variation or missing content may cause the forecast solver to
have trouble. Thus, the data assimilation process plays the role of compensation above
practical drawbacks in some manners.

2.3. Forecast Solver

Information on the calendar, weather, and feeder operation act as the forecast solver’s
input source and validation target. In contrast, the solver’s output build up the forecast
model and the future feeder status, such as the voltage, current, and power. In the plat-
form, the 128 numbers of the Maxwell® cores host this forecasting work using the Tensor-
Flow package. Under the limited memory space, the solver’s parameters and spending
time are the major consideration during the development, which may impact its perfor-
mance.

Newly announced time-series forecasting methods, such as the Arima [13], GlunoTS
[14], and Fbprophet [15], simplify the forecast work on its merits. However, the method
mixes all the time information into one data series, but not in the separated factors view.
Two deep learning methods and a decision tree method are the Vanilla LSTM, and Multi-
Layer Perceptron Model (MLP), and the eXtreme gradient boosting (XGBoost) as another
forecasting approach. The XGBoost method is excellent due to its short model training
time. However, it has the drawback of exhibiting slightly poor performance in terms of
important-factor explanation accuracy from our test. MLP is good due to its short compu-
tation time and weight accuracy. However, the inherent vanishing gradient problem [1]
resulted in the LSTM model being selected in this study.

In recent studies, the LSTM model for long-term, system-level load forecast has ex-
cellent performance [7,16,17]. In addition, the prediction error is acceptable for system
operation. Dong investigated the LSTM and another popular machine learning method
for long-term load forecast, demonstrating superior performance and great practicality
[18]. Moreover, the LSTM model can be explained and can obtain its important factor. Pal
applied the SHAP method for occupancy detection from energy consumption data [19].
The LSTM forecast solver, power flow analyzer, and important-factor explainer back-
ground are shown below.

As shown in Figure 5, a Vanilla LSTM network model has three gates: the forget gate,

f,; theinput gate, i, ; and the output gate, o,. The set of weight vectors, w, includes the

independent weights in the w,, w, , w,, and w, notation [20,21]. The trained model

c’/

f 7
includes the set of tuned weight vectors, w, which the important-factor block investi-
gates afterward.

Figure 5. A Vanilla LSTM network model.
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The mathematical equations for the LSTM model are in Equations (1)—(6). Bias vec-
tors are represented by the b;, b, b,, and b symbols. The additional memory cell can-

didate, ¢, is used to add long-term memory via the activation function. The states, C, ,
and H

.1, refer to the previous state cell memory and the output, respectively.

i, =o(wH,_ +UX,+b,) (1)
ft=c7(waH+Uth+bf) )
o,=c(wH,_ +UX, +b,) (3)
¢ =tanh(w H, , +UX, +b) 4)
C,=fC,  +ic (5)
H, = o, tanh(C,) (6)

2.4. Important-Factor Explainer

The important-factor explainer extracts the input forecast model, and demystifies the
impact concerning the calendar and weather factors as the output. For example, the high-
loading condition in the industrial area during the off-hours would be a safety issue or
something else. A significant amount of computation work evaluates its contribution ac-
cording to the factors” permutation on the game theory concept. Hence, the four cores of
the ARM CPU are responsible for this work, and deliver it to the next phase.

This feature elucidates the machine learning model into conceptual ideas regarding
values for an explanation. Shawi [22] showed that the SHAP method is better than the
Local Interpretable Model-agnostic Explanations (LIME) method and the Anchors
method, with shorter computation time and proper identity disclosure. Thus, Lundberg
[8-10] used the SHAP method in explaining the medical LSTM model in a graphical illus-
tration.

From (1)—(6), it is a challenge to explain the important factor in the trained LSTM
model. Therefore, a local and simplified model, f(z), approaches the LSTM model,

which tries to explain the factors under the forecast input case. A single unique solution
to this explanation, proved by Lundberg [23], requires satisfaction with the three desirable
properties in local accuracy, missingness, and consistency. A mapping linear regression
model, g(z'), representsto f(z) by associating ¢, andall ¢ factors in (7) [23,24].

k
f(z)=8(z)=4,+2 ¢z 7)
i=1
Each factor, ¢, contributes its individual merits, and satisfies the local accuracy
property. In (7), where z e {0,1}k for the simplified input information, ¢ €R is the real
numbers, and k equals to the 14 factors in this paper. The symbol, ¢,, denotes the model
output when no inputs are available. In this paper, the symbol, ¢, consists of the hourly

important-factors result every 168 h. After normalizing the vector, ¢, the important-fac-

tor value in each factor under the hourly forecast work.

Fair evaluation is a complex problem when the forecast model owns many factors.
The Shapley value [25] aims to understand the cost or gain between collaborating factors
based on the contribution term in the cooperation action. In other words, the factor with
the higher Shapely value dominates the coalition-winning possibility. For example, more
gold components inside the same alloy volume would be heavier than others. From the
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Narahari [26] and Kolker [25] press, the (8) Shapley value, Sh,, for each factor (not im-

portant factor), is shown as the following:

(s=1)!(s—n)!
Sh, = ;T(V(s)—V(s—k)) ®)
The symbol, s, denotes the number of a factor in the coalition, s; k denotes the coop-
eration members in a group. The symbol, n, represents the group number. Multiplying

all of the possible coalitions (s-1)!(s—n)! and marginal contributions (V (s)-V(s- k))

with a summation of them together, the Shapley value vector is obtained by dividing the
permutation number, n!.

Later, the Shapley value vector is transferred into the SHAP format to obtain the im-
portant-factor data in the format of the (7) [23]. Further discussion of the properties in
terms of local accuracy, missingness, and consistency stands for the intuitive view of the
SHAP result.

2.5. Power Flow Analyser

Regardless of the forecast solver accuracy, the result cannot satisfy electrical theory
and cover all nodes’ data. Thus, analyzers initially convert equivalent loading parameters
from the forecast results, and then compute the feeder behavior with practical parameters.
The expected items include line loss, neutral line voltage, and loading status.

Available power flow computation packages are listed in Thurner [27]. After evalu-
ation, the pandapower (2.1.0) and pydgrid (0.5.2) packages cannot complete the test rou-
tine in the EDGE environment. The PYPOWER (5.1.4) package runs perfectly, but does
not support several scenarios in the transient analysis. Finally, the analyzers’ computation
engine is built by ngspyce (0.1), and re-compiled by the Ngspice engine. Python renders
the user-interface images from Ngspice’s result in floating number matrices. This tool,
Ngspice, is involved in the very large-scale integration clock signaling simulation [28] and
the new CPU accelerator design [29] to prove its correctness.

The time-step value settings define the voltage node memory consumption in the
transient state simulation. In a 138.89 us time-step case, each voltage vector occupies
46,144 bytes within an 800 ms simulation period, consisting of the 5768 elements in the
float64 data format of Python (92,288 bytes). Thus, a large-scale fault case simulation is
not suitable for placing in the EDGE process, but rather the workstation machine.

2.6. Database Archive System and Communication to Remote Device

The important-factor explainer and power flow analyzer blocks generate the numer-
ical data and images from the trained LSTM model. Later, real-time data are saved into
the database first and fetched to the forecast solver to update the LSTM model. By moving
the time window, it periodically publishes information to the broker. A comprehensive
and secure database archiving file system offloads the design effort and supports the en-
cryption function, as shown by Wang [30]. The EDGE uses the open-source SQLite data-
base controller to store the values, strings, and images. During the operation, both the
Maxwell® and ARM core access the SQLite database simultaneously, and leave the low-
level control work by the Python package.

Next, we propose quality and low-cost methods for communicating the EDGE, bro-
ker, and user’s remote devices. A private MQTT broker on a regular PC, which is a prod-
uct of HiveMQ®, handles all the subscribed and published events via the internet. The
MQTT method supports Quality of Service to ensure communication integrity [31,32]. The
transport layer security (TLS) communication protocol ensures security requirements. The
application, MQTT Dash®, is available for download on Android mobile phones to moni-
tor feeder status anytime and anywhere.
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3. Implementation

This section introduces the systematic implementation of the aforementioned blocks
on EDGE, MQTT broker server, and mobile users. To inhibit real subscribers” information,

Equation (9) simulated its power factor, pf,, , concerning the load current, i, trend in

load 7

Figure 6:
-10.7i;

load
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Figure 6. Equivalent simplified feeder model for the end voltage or line loss calculations.

3.1. Forecast Solver

A forecast solver sequentially runs the LSTM network and cascaded processes (Fig-
ure 7). The forecast models of the input sources, such as date, atmosphere, and sunshine,
are provided in historical and real-time views. From the power company, ten items of

historical data predict the feeder voltage, v, , ; current, i , ;and assumed power fac-
tor, pf,, .. Thus, the forecast feeder voltage, au.; current, ispc.; and the power factor,

;;‘ wpcs AT determined at the end.

The data sources of the identified factors are listed as follows: year (2019-present),
month (1-12), day (1-31), weekday (1-7), hour (0-23), station pressure (hPa), temperature
(°C), relative humidity (%), wind speed (m/s), wind direction (360°), sunshine hour (h),
global radiation (MJ/m?), visibility (km), ultraviolet index (none), and cloud amount (0-
10).

historical data historical data
. v, i Pfa real-time
real time data abec tabenllabe Snimil
atameaas ™  \ J predict result
year P
month / 4 =~ Yabc

day I de- \I lapcn
weekday '>":'>( normalize i ]—I-’
station pressure | |
temperature :
relative humidity | !
, 1
wind speed 1
wind direction :
sunshine hour | | LSTM
global radiation | | | network ]
visibility o /
UV index
cloud amount _) Forecast solver

reshape to 1
tensor

estimation

validation

Figure 7. Forecast solver process blocks and flow.
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The normalized process compresses all data into the range of 0-1 to unify the varia-
bles” inherent magnitudes. After that, the reshape to tensor block packs the 2D data into
the tensor format following the batch size setting, and then copies them to the important-
factor explainer. A validation process verifies the trained model’s performance in terms
of the loss function with the training dataset, which evaluates the batch size, LSTM unit
weight, and epoch number setting. The denormalization process obtains the forecast re-
sult from the introduced estimation estimated model and external forecast data. Thus, in
every epoch routine, the entire dataset is driven forward and backward through the LSTM
network to update the weighted vectors. Lastly, the trained models save the files. This
LSTM network repetitively updates the trained model in the next forecast slot. Finally, six
images of the voltage, current, and power flow estimation are stored in the database ar-
chive for the mobile device application.

3.2. Important-Factor Explainer

As the previous section discussed, the SHAP package explains the important factor,
¢;., of the LSTM model. This process consumes the most resources, computation time, and
memory due to the LSTM input tensor size. If the batch size parameter is 12, then the size
of the input tensor is 6,756,480 bytes in this study. Only 40% of the input tensor data is
used to meet EDGE memory space limitations in this work.

Temporally, the hourly forecast model contains the updated LSTM model, calendar,
and weather information in the 168 h time length. Later, the important-factor explainer
elucidates this model and carries on the local survey. For example, the effect of the unreg-
istered and photovoltaic cell facility apparatus may be coherent with the cloud amount
factor from the explanation work. Then, EDGE communicates to the feeder dispatch con-
trol center for the corresponding strategy.

3.3. Power Flow Analyzers

As shown in Figure 8, the Ngspice program is configured by following the instruc-
tions in the user’s manual [33]. Then, to convert the Ngspice as a shared library (.so) file
for Linux kernel assertion, a parameter adjustment process computes the load model,
Z)pqq, values and adjusts the SPICE model. By converting the loading’s passive component
values from the forecast power, P; reactive power, Q; and currents, transient-state simu-
lation is executed to derive the concerned neutral line voltage and current in vector for-
mat. Thereafter, a few trigonometric functions are converted to symmetrical components.
Fast Fourier transform analysis is conducted to compute the harmonics of any vector and
compose them into images. Another steady-state analysis provides the node voltage or
current in the designed frequency point. This analysis saves memory and computation
time compared with transient-state analysis. The P and Q values in each hour are com-
puted and presented in the image file format.

T o 1N /
[ Teeder |
SPICE Steady-state analysis
\_model (.cir) Line loss
. - - Revised forecast loading
Vape ¢ \Z!O{Id/ \\‘
i [ SPICE . 1
aben Ngspice |}
bl »| parameters simulator || Transient-state analysis
abel adjustment ) \ o Instantaneous waveform
1 F N 1
1
: node 1
1 7! vectors ! Numerical analysis
1 load 1 _
1, - | ; ~ : Harmonic component
: ‘ Iteration P—‘ Power flow ).» Symmetric component
v | control | . analyser |/
Mo o o e o 4

Figure 8. Power flow computing process flow chart.
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The topology of DNs is generally complicated. Therefore, the simplified feeder
model, which is composed of an equivalent feeder, is connected with its load. Conse-
quently, a complicated feeder with various types of load and renewable energy can be
simplified, as shown in Figure 9.

F F

2+, &,

Figure 9. Simplified feeder topology with three FTUs.

This was proposed due to the fast calculation of the feeder voltage profiles and losses

[34]. Furthermore, three FTU units typically measure phase voltage, v,, ., and line cur-

ab,c’

rent, 1

ab,en’

in the feeder. The known primitive impedance Z-matrix [Z1 ) J of an equiv-

alent feeder section is determined from its operation. Some power system elements are
converted into the SPICE model [35,36], and others are converted into the simplified
model. The neutral line resistance, R,,, and inductance, L,,, are added to evaluate the

concerned current.

Figure 10 shows the single-line diagram of a real distribution feeder of Taiwan Power
Company (TPC). The simplified feeder models proposed in [22] represent the end voltage
and line loss calculations of each line section. First, the transformers with their loads or
distributed renewable energies (DREs) in each lateral were lumped to the bus of a three-
phase, four-wire feeder main, and then the transformers and their loads can be integrated
and simply represented by their equivalent loads, as shown in Figure 11 [28]. The partial
feeder in each FTU measurement area can be represented, as shown in Figure 12. Finally,
the equivalent length and loads of the simplified feeder model for the end voltage or line
loss calculations can be obtained by the formula derived in [22]. The simplified feeder
models have been applied for simplified power flow computing to obtain bus voltage
profiles and line losses with negligible error in unbalanced distribution feeders. Therefore,
the simplified feeder models are used in this paper to build the circuit model in the simu-
lation program with the integrated circuit emphasis (SPICE) model for fast calculation
with a doubtless convergence problem.
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Figure 10. Single-line diagram of a real distribution feeder of TPC.
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Figure 12. Equivalent feeder in each FTU measurement area.

3.4. Database and MQTT-Communication

In general, the database stores the number of hours of data (5448) in three dedicated
SQLite tables for the different feeder line conditions. The SQLite package handles most
low-level work in negotiating the Linux file system. The rich database commands achieve
the requirement in the merits of its database characteristic. SQLite can also be updated to
the encrypted version using CryptSQLite, as demonstrated by Wang [30].
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The MQTT system demonstrates the EDGE features. The interoperability of the
SQLite and MQTT packages was implemented by Kodali [37]. The installation guide and
software code are available on the HiveMQ® website. The MQTT protocol features the
quality-of-service levels, guaranteeing data transaction integrity. The broker supports the
TLS/secure socket layer feature [15] to protect the secret with a private key. In EDGE, a
software timer periodically publishes image files to the broker every 30 s.

The MQTT broker setup is straightforward concerning its instructions. The private
key to enable TLS security is necessary, but not the central scope of this study. Protecting
this broker machine in a secured location is highly recommended. Thereafter, the MQTT-
Dash application would provide the landscape view of the important-factor image in Sec-
tion 4.3.

4. Experiment and Discussion

The associated blocks of the forecast solver and important-factor explainer are exam-
ined. These blocks are the cornerstone in conducting a system-level experiment. Thereaf-
ter, a running EDGE device, a private MQTT broker server (Figure 13), and a few mobile
phone devices from the system are utilized. Software performance indices and hardware
operation characteristics present the results in this section.

MQTT Server

Figure 13. Prototype EDGE platform and private MQTT server.

4.1. Forecast Solver Performance Examination and Comparison

A total of 4704 rows (27 weeks) of historical data are used to predict the result of 168
sets (1 week). Each row and set contain 20 inputs and 10 outputs, respectively. A basic
Vanilla LSTM model performs each forecast routine within 236 s with a batch size of 12,
an LSTM unit of 64, and epoch times of 15. The mean absolute percentage error (MAPE)
value verifies the work in (10):

1 168

MAPE(%) =@;

Yi— VY,

10
" (10)

The consumption times and MAPE values are summarized in Table 1. The consump-
tion time takes an average of 488.6 s in LSTM training. The average MAPE values of volt-
age; current; real power, P; and reactive power, Q, are 0.46, 16.47, 20.52, and 7.56, respec-
tively.
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Table 1. Forecast solver’'s MAPE result in each FTU.

FTU FTU1 FTU2 FTU3
Phase A B C A B C A B C
voltage 04 04 05 04 05 05 05 05 05
current 170 21.3 245 121 146 159 131 143 154
P 213 268 31.6 149 180 19.6 16.1 175 189
Q 96 134 133 45 58 53 49 54 538
LSTM training time 4959 484 .4 485.7

Forecast period: 13 h (2184 time-series data), unit: % and sec.

A forecast waveform in the FTU3 (phase A current) is presented in Figure 14. From
the waveform view, the predicted and real are similar in the 168 h. The average MAPE
values are 12.81%.

Phase-A Current (A)

300
—— Real
- Predict
200
A
0] A\ A A
0
0 50 100 150 hour

Figure 14. Forecast results include the real and predicted waveforms of the phase A current.

Next, we compare the important-factor performance under the LSTM, XGBoost, and
MLP forecast solver. Equation (11) generates data value in every d number following

the randomized value, R, , multiplying the preset weight values, w,. From the preset
weight, w,_, and randomized values, continuous serial data are adopted to examine the

important-factor explainers’ performance. The candidate explainers involved two works:
predict the data value (Figure 15), and benchmark the computed important factors (Table
2).

f(d)=25‘,Rn-wn (11)

i=1

data 20
value

—— Real
6 4 —— LSTM_Predict
—— XGBoost_Predict
44 I —— MLP_Predict
T T T T T T T T T data
0 25 50 75 100 125 150 175 200
number

Figure 15. Comparison of the important-factor performance under the LSTM, XGBoost, and MLP
forecast solver.
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Table 2. Important-factor explainer performance comparison of the LSTM, XGBoost, and MLP.

Nominal Weight w, LSTM MLP XGBoost
w, 0.02 0.02 0.01 0.00
w, 0.12 0.12 0.10 0.04
w, 0.20 0.18 0.19 0.11
w, 0.29 0.31 0.32 0.26
w, 0.37 0.37 0.38 0.59
ru(r;;icr)“e - 46.90 122 46.23

Preset weight values, w_, are 0.05, 0.30, 0.50, 0.75, and 0.95.

n’

4.2. Important-Factor Explainer in the Polynomial Equation Case

In a trained model, the important-factor explainer identifies the important factors, ¢,
, and compresses them into a per-unit level. The parameters of this test LSTM model are
identical, to review its settings. As shown in Table 3, the comparison between the nominal
weight, w,, and important factor, ¢, are shown in the 10 steps in the 4704 input data

rate.

Table 3. Important-factor explainer performance in the polynomial equation case.

Nominal Weight w, LSTM ¢
w, /¢ 0.02 0.02
w, /4, 0.04 0.04
w, /¢, 0.05 0.05
w, /9, 0.07 0.08
w; /¢, 0.09 0.07
w, /¢ 0.11 0.12
w, /¢, 0.13 0.12
w, /¢, 0.15 015
W, /¢, 0.16 0.16
Wy /o 0.18 0.18

4.3. System Manipulation

Table 4 summarizes the computation time in the EDGE and PC environments. The
different FP16 performance indices hint at the reasonable computation time in the selec-
tion of the new tensor processing unit (TPU) platforms. The proposed EDGE, with a score
of 0.472, spends 4743.5 s in one routine. The PC platform is faster with richer resources.
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Another result is the communication burden breakdown list in all classifications, as
presented in Table 5. Taiwan’s Central Weather Bureau (CWB) offers free weather and
solar observation data hourly via the web application programming interface (API) in 2.58
kB. Each analysis result from EDGE converts to the images in 467 kB. The MQTT protocol
is divided into many transmission control protocol layer packages in 1494 bytes. The daily
CWB forecast data are 56 kB. Historical data and FTU measurement data are still from the
TPC and CWB database in this study.

Table 4. Computation time comparison on EDGE and PC.

PC
Platform EDGE
i7-5820K CPU
(FP16 Performance (TFLOPs)) Nano Jetson (0.472) P2000 GPU (3.0)
LSTM forecast LSTM networks 1679.6 413.5
LSTM forecast estimation 92.2 22.0
Symmetric component analysis 6.8 1.3
Steady-state analysis—line loss 17.1 3.1
Important-factor explainers 2932.4 530.1
MQTT publish 15.4 3.0
Total (seconds) 4743.5 963.0
The term, FP16, refers to the “16-bit floating point”.
Table 5. Communication burden review.
Data Source Classification Protocol Burden
feeder FTU historical database --
weather/solar CWB historical database -
weather/solar CWB observation web API 2.58 k/h
database
feeder FTU measurement (IEC61850) --
analysis result EDGE forecast MQTT 467 k/h
weather/solar CWB forecast web API 56 k/day

Unit: bytes; web API: the open weather data service from the Central Weather Bureau in Taiwan.

Figure 16 contains 15 importance factor analyses in the FTU3 current mode analysis;
the hour and cloud importance factors are dominants. The high cloud, low wind speed,
and low wind direction factors prove that the FTU3 feeder connects some PVs, but no
wind energy generators are shown in the illustrations in Figure 6. Three-phase loading is
almost in balance, except the B-phase is slightly higher.

The forecast result example is illustrated in Figure 17, which contains the PQ power,
voltage, current, and transmission line loss manners. The white and gray color areas rep-
resent the day and nighttime, respectively. The dual vertical axes, start and end time, and
legend form the necessary references from the small mobile phone screen view. A user
client refers to a mobile phone and monitors feeder operation. The MQTT-Dash applica-
tion subscribes to the desired topics and receives the latest images.

A running EDGE, MQTT broker, and mobile phone device form the proposed ser-
vice. At a room temperature of 20 °C, EDGE and its system on a chip (50OC) consume
power at approximately 17.6 and 9.0 W, respectively. The semiconductor’s junction tem-
perature increases to 25 °C from the report on the Linux kernel [38]. Deploying EDGE
outdoors may have a suitable thermal design margin during summer at 45 °C, but may
not reach the operation limitation of 97 °C.
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Current importance factor analysis in FTU3
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Figure 16. Importance-factor explainer result displayed on the mobile device screen.
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Figure 17. FTU3 phase A forecast in the PQ (top), voltage and current (middle), and transmission
line (bottom).

5. Conclusions

This study demonstrated an FTU-based feeder power forecast using the EDGE plat-
form. This platform consists of data collection, forecast solver, important-factor explainer,
power flow calculation, MQTT publisher, MQTT broker, and MQTT-Dash application.
Theories were introduced from the algorithm equations to implement strategies to build
up the system.

The forecast solver result indicated the waveform comparison between the real and
forecast outcomes in approximately 488.6 s. The important-factor explainer examined the
design concept, and its normalized factors exhibited a 6.54% error.

In the system experiment, the values of surface temperature, junction temperature,
and power consumption performed well within the Jetson Nano SOC IC specification.
The user client application displayed EDGE'’s published images from the MQTT broker
service. All of the images, forecast data, analyzer output, and loss tables were stored in an
SQLite format file in an SD card for further application. The developed prototype platform
could be implemented in FTU in the laboratory to enhance the intelligence function in
smart ADN operations.
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