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Abstract: This paper presents the development of a generic active distribution network (ADN) op-

eration simulation framework that incorporates selected swarm optimization algorithms (SOAs) for 

the purpose of reducing CO2 emissions and line loss minimization through network reconfiguration 

(NR). The framework has been implemented in the ADN of Taipower. Network data, provided by 

the Distribution Mapping Management System and Distribution Dispatch Control Center (DDCC) 

of Taipower, were converted into an OpenDSS script to create ADN models. The SOA is integrated 

into the framework and utilized to determine the statuses of both four-way and two-way switches 

in the planning and operating stages, in accordance with the proposed multi-objective function and 

operational constraints. The weightings for these decisions can be customized by distribution oper-

ators to meet their specific requirements. In this paper, the weighting for line loss reduction is set to 

one for minimizing CO2 emissions. The numerical results demonstrate that the proposed ADN 

framework can recommend a feeder switching scheme to distribution operators, aiming to balance 

feeder loading and minimize the neutral line current. Finally, this approach leads to reduced line 

losses and minimizes CO2 emissions. In contrast to relying solely on historical operational experi-

ence, this generic ADN reconfiguration framework offers a systematic approach that can signifi-

cantly contribute to reducing CO2 emissions and enhancing the operational efficiency of ADNs. 

Keywords: CO2 emissions; line loss; active distribution network; network reconfiguration; swarm 

optimization algorithms; OpenDSS 

 

1. Introduction 

The majority of ADNs feature a radial topology, consisting of distribution genera-

tions (DGs) and loads arranged to serve both high and low voltage customers. This radial 

arrangement is chosen for the considerations of its reliability and cost benefits. However, 

it is acknowledged that the power flow in each branch and bus voltage profile distribu-

tion, as well as service reliability, is inferior in radial ADNs compared to that in closed-

loop, mesh, and interconnected networks [1]. 

To address the inherent limitations of radial ADNs, network reconfiguration (NR) has 

been widely employed in distribution system operations. This involves changing the open 

and closed statuses of the sectionalizing and tie switches of the feeders [2–8]. Regardless of 

topology changes, the distribution networks (DNs) must be maintained in a radial type. 

In the past decade, advancements in information and communication technology, 

coupled with the application of artificial intelligence algorithms, have enabled the 
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realization of smart operations in DNs. Notably, in NR, the solution speed and efficiency 

have seen significant improvements in large-scale systems, utilizing machine learning, 

deep learning, and reinforcement learning algorithms [9–12], as well as metaheuristic al-

gorithms [13–19]. 

Various approaches have been explored, such as the use of the social beetle swarm 

optimization algorithm [20], two-stage binary swarm optimization [21], selective firefly 

algorithms [22], the water cycle algorithm [23], hybrid metaheuristic and heuristic algo-

rithms [24], the harmony search algorithm [25], and the fuzzy C-means clustering algo-

rithm [26], among others. These approaches aim to optimize network configurations and 

switching operations, considering factors like power loss, load balance, and voltage devi-

ation. 

Despite the demonstrated capabilities of these algorithms, their practical implemen-

tation in large-scale ADNs faces challenges related to acquiring and managing extensive 

data, including long-term load data, photovoltaic (PV) and wind turbine (WT) generation 

data, and switch status data. This paper addresses these challenges by incorporating big data 

into NR problem-solving using swarm optimization algorithms. The goal was to achieve 

feeder loading balance, ultimately reducing line losses and decreasing CO2 emissions. 

In addition, addressing the challenge of NR in ADNs is particularly complex due to 

the intermi�ent power outputs of DGs and the diverse nature of loads in practical ADNs. 

Therefore, this study was dedicated to developing a platform that leverages SOAs to 

achieve CO2 emission reduction and line loss minimization within ADNs. This platform 

is designed to be efficient and user-friendly, providing distribution operators with a val-

uable tool to determine optimal feeder switching strategies in order to balance feeder 

loading, ultimately reducing line losses and CO2 emissions. The effectiveness of this plat-

form was evaluated through its implementation in Taipower ADNs. This paper is orga-

nized into five sections. Section 1 introduces the background and objectives of the study. 

Section 2 outlines the approach used to model Taipower ADNs. Section 3 elaborates on 

the integration of NR with swarm optimization algorithms. Section 4 demonstrates the 

functions of the developed platform and presents the results of numerical simulations. 

Finally, in Section 5, we provide the conclusion of this research. 

2. Modeling of the ADNs 

In order to develop a simulation framework within a real ADN, it is crucial to accu-

rately model the distribution feeder. OpenDSS (Version 9.6.1.2), an electric power distri-

bution system simulator, plays a vital role in supporting the integration of DGs and mod-

ernizing the grid. This versatile, customizable, and user-friendly tool is increasingly being 

employed in various research projects [27]. The DN models within OpenDSS encompass 

most components of a DN, including DGs like PV and WT ones, and the engine can effi-

ciently solve time-series three-phase unbalanced power flow simulations. Moreover, 

OpenDSS allows the creation of simulation scripts using text files, which simplifies the 

modeling of extensive DNs, such as those managed by Taipower ADNs. Therefore, 

OpenDSS was chosen as the simulation engine for the proposed framework. Data regard-

ing DN elements and network topology were extracted from the Distribution Mapping 

Management System (DMMS) and the Supervisory Control and Data Acquisition 

(SCADA) system of the DDCC and were then converted into OpenDSS scripts to construct 

the ADN model. Subsequent sections will detail how to acquire and process the extensive 

data associated with Taipower ADNs. 

2.1. SCADA System in DDCC 

The power system comprises three main components: generation, transmission, and 

distribution systems, which form the vertical structure of the system. The DDCC and the 

Feeder Dispatch Control Center (FDCC) are situated at the terminus of the Hierarchical 

Dispatch and Control System (HDCS) within the power system. As a result, network to-

pology data, customer load data, and DG data can be acquired from both the DDCC and 



Sustainability 2024, 16, 1493 3 of 19 
 

FDCC. The NR problem involves the manipulation of feeder switches within the zones of 

ADNs, falling under the jurisdiction of a specific DDCC and FDCC. In this research, spe-

cific regions within Taipower’s ADNs were employed as the sample system. The chosen 

area encompassed 23 substations, comprising 9 distribution substations (D/Ss), 13 second-

ary substations (S/Ss), and 1 primary substation (P/S). Each substation accommodated 

one–three main transformers, with each main transformer connected to five–six feeders. 

In summary, this specific area comprised a total of 348 feeders. 

Figure 1 depicts a section of the SCADA screen within the substation of this particular 

district. Vital details, such as current and power flows from the feeder, were distinctly 

displayed on the screen, accessible through the database. Typically, each feeder in 

Taipower is equipped with two–four feeder terminal units (FTUs) to facilitate feeder au-

tomation within ADNs. The FTU measures the manner of power flow and transmits it 

directly to the FDCC and DDCC using IEC 61850 [28] or DNP 3.0 protocols without any 

further manipulations. The single line diagrams and photos of the four- and two-way 

FTUs are also presented in Figure 1a,b. Left- and right-way switches generally constitute 

the FTUs, and the other two switches of the four-way FTU are for the laterals or high 

voltage customers. Currently, the underlying standard functions of FTUs are measure-

ment, control, and fault detection [29]. Consequently, the big data of the measured three-

phase real and reactive powers is stored in the database in the DDCC, and these data are 

used for solving emergency, real-time, and short-term operating problems, such as fault 

detection, isolation, restoration (FDIR), and planned maintenance. In this research, the 

measured data were used to represent the net load pa�ern, which was composed of the 

original loads and DGs of each feeder segment for solving the power flow to obtain the 

optimal NR. The load modeling method is described in the next subsection. 

 
(a) (b) 

Figure 1. Automatic switches with FTU in a feeder segment in Taipower SCADA system. (a) Four-

way switch. (b) Two-way switch. 

2.2. Network Topology Modeling 

As illustrated in Figure 2, the model of the ADNs was constructed by converting the 

following files: “substation (.set)”, “switch and transformer (.set)”, and “FTU data (.sql)”. 

These files were obtained from the DMMS and SCADA systems of Taipower’s DDCC and 

were transformed into OpenDSS scripts (.dss). The conversion process was implemented 

using Python programming language, which allowed for the transformation of the three 

files into their corresponding parts in OpenDSS. These parts encompassed substation, line, 

line code, load, load shape, DGs, switch, and location scripts, all of which were essential 

for modeling the ADN. In particular, the load and DG pa�erns contained within the (.sql) 

file were converted into (.csv) files. This conversion enabled OpenDSS to execute time-

series (hourly) power flow simulations. The OpenDSS scripts were organized into three 

main sections, namely the substation, branch, and load and DG models, each of which is 

detailed in the following sections. 



Sustainability 2024, 16, 1493 4 of 19 
 

 

Figure 2. The schematic diagram of data converting processing. 

2.2.1. Substation Model 

The existing names or codes of substations, main transformers, and feeders were 

stored in the individual fields of the substation (.set) file. As a result, these interrelated 

data were employed to establish the link between substations and feeders via the main 

transformer. Vital parameters, such as the number of windings, short-circuit impedance 

of the main transformer, base voltage, and per unit values, were included within the sub-

station script to accompany this correlation. 

2.2.2. Branch Model 

The switch and transformer (.set) files contained a data table with 13 fields represent-

ing the relationships between feeders, switches, distribution transformers, and the types 

and capacities of DGs. These fields are outlined as follows: 

 Switch coordinates; 

 Latitude and longitude of switch coordinates; 

 Switch coordinates of the upstream switch; 

 Feeder code to which the switch belongs; 

 Switch status; 

 Whether the switch is normally opened or not; 

 Switch type and code; 

 Switch coordinates of the downstream switch (in case of a normally opened switch); 

 Feeder code to which the downstream switch belongs (in case of a normally opened 

switch); 

 Pole number or address; 

 Conductor type and length; 

 DG type and installed capacity. 

This dataset could be transformed into a branch model by using line code scripts 

within OpenDSS. The model included three-phase impedance per unit length based on 

Taipower’s distribution line specifications, such as 500 MCM, 400 MCM, and others. With 

the connection relationships, latitude and longitude details, line lengths, and line imped-

ance, the line model could be constructed. Furthermore, the geographic information of the 

area grid could be visualized using Python programming language in conjunction with a 

graphing library. 
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2.2.3. Load and DG Models 

To analyze the long-term steady-state power flow solution, the critical factor is the 

load and DG data, owing to their time-varying characteristics. This is particularly signifi-

cant in ADNs with high DG penetration, as the bidirectional power flow cannot be ade-

quately represented by single-time-point data. Consequently, acquiring a large dataset of 

customer load and generation data from PV systems and small WTs connected to the ADN 

is essential to address this challenge. However, obtaining such load and DG data presents 

practical challenges. In the case of load data, the Advanced Metering Infrastructure (AMI) 

is not widely implemented in Taipower’s ADNs, and privacy concerns limit access to data 

from some high-voltage customers. As for DG data, information on DGs with an installed 

capacity of less than 100 kW is not transmi�ed back to the DDCC in Taipower. Conse-

quently, the metered point returns to the upstream FTU to comprehensively and accu-

rately collect this information.  

The FTU’s measured data included three-phase active and reactive powers, line cur-

rents, and bus voltages within its measurement section, as depicted in Figure 3. Typically, 

FTUs are installed at the front end and middle section of a feeder. To estimate the loads at 

each tapped-off point on a feeder, the metered hourly net loads from the measurement 

sections of the FTUs are divided into the respective loads of high-voltage customers, dis-

tribution transformers, laterals, and DGs based on their capacities. Assuming that the 

hourly measured real and reactive powers are represented as h
FTUP  and h

FTUQ , and there 

are n tapped-off points in this section, with 
,DT i

C  denoting the installed capacity of each 

distribution transformer, the real and reactive powers of each distribution transformer can 

be determined by (1). 

,

,

, , , (+ ) DT i

n

DT i

i

h h h h h
DT i DT i DT i FTU FTU

C
P

C

S P jQ jQ  


 

(1) 

Based on the hourly load data obtained at each bus in the feeder, the proposed algo-

rithm allowed for the real-time or periodic optimization of the NR in the ADNs at 

monthly, seasonal, and annual intervals. This enabled the system to continuously adapt 

and find optimal solutions to enhance its performance and efficiency. 

 

Figure 3. The sketch of the FTU measurement section (the red star represents the normally open 

point). 

3. NR Optimization Algorithm 

NR is a complicated problem with strict constraints, and the circuit topology must be 

kept radial for the coordination of protection relay and to comply with the grid code. In 

this section, the proposed NR algorithms and their integration with the SOA is discussed. 

3.1. NR Algorithms 

In general, the topology of ADNs is primarily radial or open-loop. Closed-loop or 

interconnected networks are typically implemented in areas that require high reliability. 

Within an open-loop system, after fault detection and isolation, the un-faulted feeder seg-

ment can be transferred to other feeders using mechanisms such as normally open tied 
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switches, sectionalizers, reclosers, ring main units (RMUs), and feeder sectionalizing units 

(FSUs) to restore the electricity. This strategic approach aims to minimize interruptions 

and reduce outage durations. The NR problem is to find out the optimal feeder radial 

topology by operating the normally opened (NO) and normally closed (NC) feeder 

switches to uniformly distribute feeder segment current and then balance the feeder load-

ing, reduce the line loss, etc. Therefore, the NR algorithm must comply with the radial 

topology. However, due to the algorithmic randomness, there will not only usually be 

closed-loop topology but also the islanding branches if the switch status is decided by the 

agent state of the algorithm. Many studies about NR have been conducted and have pro-

posed approaches to address this challenge. Sekhavatmanesh et al. [30] used the con-

straints in an algorithm to filter the closed-loop or islanding topology; this method will 

work well in a simple ADN but will not obtain a feasible solution if the ADN is very large, 

such as that for the Taipower real system. Prasad et al. [28] identified all feasible radial 

topologies in advance and stored them in a dataset. The algorithm then selected data from 

the dataset to ensure the right solution. However, this approach becomes time-consuming 

for large networks due to the effort involved in obtaining all feasible topologies. In this 

research, an NR algorithm was proposed and developed. If the NO switches were closed, 

then the network would have a loop, and the algorithm would determine the switch in 

this loop according to the topology level. The swarm algorithm would decide to open one 

of the switches in the loop to restore the radial topology. Through the above process, one 

set of an NO and NC switch operation was completed, and the topology was changed. 

The algorithm iterated through this process until all NO switch operations were com-

pleted. The flow chart depicting this process is shown in Figure 4. 
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Start

Build original network 
topology

Close nth N.O. switch and get the 
connected line

Get the topology level of each line 
from OpenDSS

Consider the lower-level line as the 
upstream line, and obtain the 

switch list for the loop.

Open one of the switch among the 
loop by Swarm Algorithm

Update the network topology and 
let n=n+1

n>N

No

Yes

Solve the power flow of the reconfigured 
network and compute the fitness value of the 

multi-objective function

End
 

Figure 4. The sketch of FTU measurement section. 

Tracking the loop was a challenging technical task in this method because one line 

may connect to many others, and determining which line formed the loop was unknown 

from the perspective of a specific line. Fortunately, the network level could be obtained in 

OpenDSS, allowing for the determination of upstream and downstream relations, as in-

dicated by the numbers in Figure 5. This illustrative diagram depicted two substations 

and four feeders. The substation was considered level 0, the line connected to it was level 

1, and so on. Consequently, scanning the line from the NO switch to the line with the 

minimum topology level enabled the determination of the loop, as highlighted by differ-

ent colors in Figure 5. One of the switches in this loop was selected by swarm intelligence, 

and the circuit topology changed accordingly. This process was sequentially conducted 

for each NO switch. A new topology was obtained, and the power flow of the new circuit 

was solved by OpenDSS. The performance of this topology was evaluated by the swarm 

algorithm based on the power flow results, such as line loss and voltage profile. Figure 5 

also illustrates various types of loops generated by closing the NO switches, described as 

follows: 

 The loop within one feeder; 

 The loop between two feeders fed by the same transformer; 

 The loop between two feeders fed by different transformers in the same substation; 

 The loop between two feeders fed by different transformers in different substations. 
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In general, the 11.4 kV feeders can be transferred to each other by the NO tie switch, 

regardless of whether they are fed by S/S or D/S; similarly, the 22.8 kV feeders also can be 

transferred to each other, whether they are fed by D/S or P/S. 
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Figure 5. Illustration of topology level and loop (The colors represent different feeders, and the 

numbers are the bus codes in the original radial feeders). 

3.2. Swarm Intelligence Algorithms 

Swarm intelligence refers to the collective behavior of a decentralized and self-orga-

nized system inspired by biology, nature, and human interactions. This algorithm em-

ploys simple mathematics formulated based on the mechanisms observed in swarm sys-

tems, such as mimicking the behavior of foraging and natural phenomena, to search for 

the best solution in each iteration. Unlike methods that rely on derivatives in gradient 

descent or ascent, swarm intelligence formulations are typically straightforward and re-

quire minimal computation time. Consequently, good solutions can be quickly obtained. 

These types of algorithms are well-suited for addressing optimization problems, such as 

NR in ADNs. In this research, swarm algorithms were adopted as optimal approaches for 

selecting the switches to open in the loop described in Figure 5, as illustrated in Figure 6. 

Each agent of the swarm represented a set of open switches in the loops. The swarm un-

derwent different positions to conduct global and local searches, ultimately finding the 

best or optimal solution at the end of the iteration. A generic SOA can be expressed as 

follows: 

Step 1. Initialization: initialize a swarm of individuals, such as particles, agents, or solu-

tions, within the search space. 

Step 2. Evaluation: evaluate the fitness or objective function value of each individual in the swarm. 

Step 3. Iteration or Generation: repeat the update position, evaluation fitness, update per-

sonal best, update global best, and termination check steps until a termination criterion is 

met, for instance, a maximum number of iterations or a satisfactory solution is found. 

Step 4. Termination: once the termination criterion is met, the algorithm returns with the 

best solution found. 

In this study, forty-two popular or novel swarm algorithms were investigated and 

implemented using Python language to determine their effectiveness in solving the NR 

problem, and the detailed theory and equations can be found in SOA reference [31]. The 

benchmark function used for evaluation was the Rastrigin function, represented as (2), 

where A = 10,  , ..., N
i Nx x    , N is the dimension, the global minimum is 0 when

 0, 0, ..., 0x  , and the search domain is 5.12 5.12ix   . The ADNs of the Taipower sys-

tem were very large, so the solving time of the power flow would be very long. Conse-

quently, the algorithm must quickly converge and obtain a feasible solution. Table 1 lists 

the performance of the 42 algorithms selected in this research. The dimension of the test 

function was set to 100 to simulate the NR problem, and the correct solution needed to be 

determined using 100 agents in 100 iterations. The results showed that only the GWO, 
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EOA, WOA, COA, NMRA, HHO, MRFO, BES, SSA, HGS, VCS, and SMA could obtain 

the correct solution. However, the VCS and SMA spent too much time in the process. 
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Figure 6. Illustration of a set of open switches in the loops of an agent of the swarm (The colors 

represent different loops, and the numbers are the bus codes in original radial feeders). 

Table 1. Performance of swarm algorithms. 

Algorithm Solution Runtime(s) 

Particle Swarm Optimization (PSO) 1242.19 1.613637 

Bacterial Foraging Optimization (BFO) 1463.61 107.155 

Cat Swarm Optimization (CSO) 1355.29 14.05538 

Artificial Bee Colony (ABC) 491.55 1.712844 

Ant Colony Optimization (ACO) 1618.03 14.6655 

Cuckoo Search Algorithm (CSA) 1461.39 1.853617 

Firefly Algorithm (FFA) 1587.87 49.15207 

Fireworks Algorithm (FA) 1294.55 3.847575 

Bat Algorithm (BA) 1558.86 1.38656 

Fruit-Fly Optimization Algorithm (FOA) 2040.24 7.049848 

Gray Wolf Optimizer (GWO) 0.00 1.539688 

Social Spider Algorithm (SSOA) 1504.65 0.690324 

Ant Lion Optimizer (ALO) 402.63 46.97378 

Elephant Herding Optimization (EOA) 0.00 3.564406 

Moth Flame Optimization (MFO) 1603.64 7.295122 

Elephant Herding Optimization (EHO) 131.34 1.497053 

Jaya Algorithm (JA) 1600.77 1.282912 

Whale Optimization Algorithm (WOA) 0.00 1.508786 

Dragonfly Optimization (DO) 666.44 11.00129 

Bird Swarm Algorithm (BSA) 591.46 1.773952 

Spotted Hyena Optimizer (SHO) 1499.59 9.781862 

Salp Swarm Optimization (SSO) 391.27 1.594091 

Swarm Robotics Search and Rescue (SRSR) 83.00 4.74453 

Grasshopper Optimization Algorithm (GOA) 790.76 23.5384 

Coyote Optimization Algorithm (COA) 0.00 2.418113 

Moth Search Algorithm (MSA) 586.16 1.869665 

Sea Lion Optimization (SLO) 682.77 1.510401 

Wildebeest Herd Optimization (WHO) 740.62 13.97535 

Naked Mole-Rat Algorithm (NMRA) 0.00 1.836967 
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Pathfinder Algorithm (PFA) 15.49 22.0776 

Sailfish Optimizer (SFO) 0.15 2.998278 

Harris Hawks Optimization (HHO) 0.00 2.901618 

Manta Ray Foraging Optimization (MRFO) 0.00 3.15128 

Bald Eagle Search (BES) 0.00 4.810156 

Sparrow Search Algorithm (SSA) 0.00 3.538787 

Hunger Games Search (HGS) 0.00 1.867956 

Aquila Optimizer (AO) 0.28 2.288997 

Invasive Weed Optimization (IWO) 567.42 6.452828 

Biogeography-Based Optimization (BBO) 178.79 15.18734 

Virus Colony Search (VCS) 0.00 29.25268 

Satin Bowerbird Optimizer (SBO) 336.17 14.31655 

Slime Mold Algorithm (SMA) 0.00 35.22056 

4. The Developed Framework and Numerical Results 

The ADN could be modeled using OpenDSS, and the net load data could be obtained 

from the DDCC database through the conversion process illustrated in Figure 2. The se-

lected SOAs were integrated to solve the NR of ADNs. This section emphasizes the devel-

opment of the Generic Active Distribution Network Reconfiguration Framework 

(GADNRF) using Python language and discusses the numerical results. The GADNRF 

served as a user-friendly interface (UI) designed for ADN operators. 

4.1. Framework Structure and Multi-Objective Function 

Figure 7 illustrates the UI of the proposed platform for the GADNRF, and its func-

tions are explained as follows: 

 Users can choose whether to operate switches for laterals or exclusively within the 

main feeder. 

 Two simulation modes are available: “fast” and “complete”. The “fast” mode utilizes 

daily average load data for the power flow solution, while the “complete” mode uses 

complete data. 

 Users can choose the weights of the proposed objective function, which are further 

described below. 

 The platform offers a choice of forty-two swarm algorithms, with adjustable param-

eters for the agent population and iteration count. 

 Users can set the year, month, and period of historical load data as the simulation 

period. 

 Multiple target substations can be selected, and the UI displays the main transform-

ers and upstream feeder. 

 Geographic information is visually presented for intuitive use. 

 Information related to simulation se�ings is displayed in the text area. 

 After the simulation is complete, results and suggestions regarding switch operations 

are exported to a designated folder. 

 Simulation results, including total line loss, line current, neutral current at the feeder 

front, and geographic information, are depicted as bar charts upon completion of the 

simulation. 

The planning of the aforementioned functions needed to consider reducing CO2 

emissions. Therefore, this research integrated power losses, neutral current reduction, 

feeder current uniform distribution, mitigation of bus voltage fluctuation, and minimizing 

switch operation times to establish a multi-objective function. 

The five indicators mentioned above can be formulated as individual objective func-

tions in (3)–(7). The formulas f1~f5 represent the normalized values corresponding to 

power loss, neutral current, feeder segment current, bus voltage magnitude, and switch 

operation times. 
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where 
,i lossP  is the total line loss of ith feeder, 

,i neutralI is the neutral current of the ith feeder 

front, and iI  is the ith feeder segment current. Moreover, I   is the trimean of them as 

shown in (8); Q1, Q2, and Q3 are the quartile of them; and var I  is the variance of them as 

shown in (9). Additionally, 
, variV  is the average bus voltage magnitude variation of the ith 

feeder and can be calculated by (10), where DER
jV  is the jth bus voltage magnitude with DG, 

and 
jV  is the jth bus voltage magnitude without DGs. Finally, 

,i switchN  is the switch opera-

tion times of the ith feeder. 
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After normalization and weighting, the multi-objective function is formulated as (11): 

1 1 2 2 3 3 4 4 5 5+f w f w f w f w f w f     (11) 

which is subject to 

1 2 3 4 5+ =1w w w w w    (12) 

0.95 p.u. 1.03 p.u.    1, ...,bus
iV i n    (13) 

300 A    1,...,line
jI j m   (14) 

In (13) and (14), bus
iV  is the voltage magnitude of the ith bus, n is the number of buses, 

and 
line
jI  is the current magnitude of the jth line segment, where 0.95 and 1.03 p.u. rep-

resent the values of the under-voltage and over-voltage limits, and 300 A means the max-

imum ampere capacity under the normal operation of Taipower. Among the above equa-

tions, iw  denotes a weighting factor that can adjust for the operating requirement. 
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The electrical energy in current power systems is generated by a combination of tra-

ditional thermal power plants and renewable energy power plants, resulting in the pro-

duction of gray energy. Consequently, if the line losses can be minimized, there is a cor-

responding reduction in CO2 emissions. While the reduction may not be substantial, it 

does contribute to lowering CO2 emissions. Therefore, CO2 emission can be computed by 

(15) after the convergence of the multi-objective function in (11), where 
coefC  is the CO2 emis-

sion coefficient, NF is the number of feeders, and NSeg is the number of feeder segments. 

2 ,
1 1

E
NSegNF

CO coef jk loss
j k

mission C P
 

    (15) 

 

Figure 7. The developed UI of the GADNRF. 

4.2. Numerical Results and Discussions 

Due to limitations in paper length, this study only simulated and analyzed two cases. 

The target substation in the proposed platform could be one or more. In this subsection, 

the numerical results of a single X* S/S and multiple substations are presented as exam-

ples. Due to privacy issues with Taipower, the substation and feeder names were masked 

for confidentiality. 

In this study, two cases were simulated, one for an individual substation and another 

for multiple substations. In the individual substation’s case, Figure 8 shows the geo-

graphic information of X* S/S. The historical load data in July 2022 was utilized in this 

simulation. The weight w1 for the objective function f1 was set to one for the major consid-

eration of reducing total CO2 emissions, as line loss was directly proportional to the square 
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of the magnitude of the feeder current. Once the current was distributed more uniformly 

in each feeder segment, the minimum total line loss became achievable. 

The GWO was selected as the swarm algorithm in this simulation, and the conver-

gence history is shown in Figure 9. Before and after the NR, the simulation results of the 

maximum line currents of phases A, B, and C, maximum neutral currents, and total line 

losses of each feeder in X* S/S are depicted in Figures 10–12. The three red bars represent 

the three-phase current before NR, while the blue bars represent the three-phase current 

after NR. The results indicated that the maximum current between feeders was more 

evenly distributed compared to that of the original system. The maximum current in 

feeder X*32 significantly decreased to 228 A, while for feeder X*28, it increased to 195 A, 

representing the highest maximum current among all feeders. Furthermore, the maxi-

mum currents for all feeders remained within the operational limit of 300 A. 

Additionally, the total line loss for feeder X*32 was reduced to 1420 kWh from 1669 

kWh during the 12 h simulation. Due to the CO2 emission coefficient of Taipower being 

0.495 kg/kWh, the calculation results for total CO2 emissions were reduced to 702.9 kg 

from 826.16 kg. The reduction percentage was 14.92%. Although the objective function 

weight for the neutral current was set to 0 in this simulation, it still complied with 

Taipower’s limitation of 70 A. The suggested switch operation results are listed in Table 2. 

Moreover, the simulation results of multiple substations are presented as follows. 

Figure 13 shows the geographic information of 3 S/Ss. The WOA was selected to be the 

algorithm in this simulation. The histogram of the individual phase current at the feeder 

front of the 3 S/Ss is shown in Figure 14. The probability of high currents at the feeder 

front was lower after NR, where the frequency of the maximum current over 250 A in this 

case was reduced from 15 to 9, and the overall maximum current distribution was central-

ized under 150 A; this helped to reduce CO2 emissions. 

In addition, the simulation results for multiple substations are presented as follows. 

Figure 14 shows the geographic information of 3 S/Ss, and the WOA was selected as the 

algorithm in this simulation. The histogram of the individual phase current at the feeder 

front of the 3 S/Ss is shown in Figure 15. The probability of high currents at the feeder 

front was lower after NR, where the frequency of the maximum current over 250 A in this 

case was reduced from 15 to 9, and the overall maximum current distribution was central-

ized under 150 A. This result also contributed to the reduction of line loss and CO2 emis-

sions, as illustrated in Figures 16 and 17, respectively. Although the reduction may appear 

small, it represents an improvement for a specific 12 h period in a localized area. If this 

NR strategy were applied to the entire national distribution grid, considering annual 

losses, the benefits would be quite substantial. 

Table 2. Switch Operation Suggestion. 

Feeder 

Name 

Switch 

Name 

Status 

(NO/NC) 

Feeder 

Name 

Switch 

Name 

Status 

(NO/NC) 

X*23 K01***E60-S01 NC X*25, X*35 K01***E09-S01 NO 

X*25 K02***B56-F01 NC X*32, X*28 K08***C72-S01 NO 

X*25 K04***A62-S01 NC X*32, X*28 K08***B03-S01 NO 

X*28 K08***B32-S01 NC X*34, X*28 K07***C42-S01 NO 

X*30 K03***A11-F01 NC X*25, X*30 K03***D23-F01 NO 

X*30 K04***E08-S01 NC X*33, X*27 K03***D44-S08 NO 

X*32 K08***B18-S01 NC X*34, X*28 K07***E84-S01 NO 

X*32 K10***B50-S01 NC X*25, X*34 K04***C22-S01 NO 

X*33 K03***D44-J07 NC X*35, X*30 K02***C33-S01 NO 

X*34 K07***D40-S01 NC X*23, X*35 K00***D00-S01 NO 

X*35 K01***D29-S01 NC X*25, X*35 K02***E72-F01 NO 

Note: Due to privacy concerns, the substation name is masked as * and ***. 
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Figure 8. Geographic information of X* S/S (Due to privacy concerns, the substation name is 

masked by the black line). 

 

Figure 9. Convergence history of GWO. 

 

Figure 10. Maximum three-phase currents of each feeder in X* S/S. 
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Figure 11. Maximum neutral currents of each feeder in X* S/S. 

 

Figure 12. Total line losses of each feeder in X* S/S. 

 

Figure 13. Total CO2 emissions of each feeder in X* S/S. 
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Figure 14. Geographic information of the 3 S/Ss. 

 

Figure 15. Histogram of the individual phase current at the feeder front in the 3 S/Ss (The orange 

color represents the result before optimization, and the blue color represents the result after opti-

mization; furthermore, the purple-gray denotes the overlapping part of orange and blue). 

 

Figure 16. Total line losses of the 3 S/Ss. 



Sustainability 2024, 16, 1493 17 of 19 
 

 

Figure 17. Total CO2 emissions of the 3 S/Ss. 

5. Conclusions 

In this study, we developed a GADNRF aimed at reducing CO2 emissions by uni-

formly distributing line currents and reducing line loss in ADNs through optimized 

switch operations during both the system planning and operational stages. The applica-

tion focused on real ADNs within Taipower, with data sourced from the DMMS and 

SCADA systems of the DDCC. The approach for modeling ADNs was elucidated and im-

plemented, including an NR algorithm designed to maintain radial topology within 

ADNs. This algorithm is universally applicable across ADNs without necessitating data 

preprocessing. A total of forty-two swarm algorithms were harnessed to explore optimal 

NR solutions. For user convenience, we designed a user-friendly interface tailored to ADN 

operators, enhancing the intuitive nature of the platform. In conclusion, we presented nu-

merical simulation results for both single and multiple substations. These results demon-

strated that the performance of the target ADNs, including factors such as total CO2 emis-

sions, line losses, and uniformly distributed feeder currents, surpassed that of the original 

system. The proposed platform holds considerable significance, offering an amalgamation 

of big data, swarm intelligence, and power flow analysis. The NR algorithm’s suggested 

switch operations provided a systematic approach for distribution operators, offering a 

more objective methodology compared to relying solely on personnel experience. For fu-

ture studies, this study can be extended to explore research topics related to NR. These 

may include enhancing the hosting capacity of modern distribution networks with a high 

penetration of DGs through NR, as well as implementing smart feeder load management 

to prevent feeder overloading and reverse power flow to the main transformers in distri-

bution substations caused by DGs through NR. 
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